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Abstract:
This study investigates the performance of three computer 
vision neural networks architecture, which are the standard 
U-Net, Deep Residual U-Net(ResU-Net), and VGG19 
Integrated U-Net (VGG19U-Net) on car view segmentation. 
The models are trained with 4000 images and their masks 
and are tested at different stages of training. The validation 
criterion includes training and validation loss, Intersection 
of unions and Dice coefficient. The results demonstrate that 
ResU-Net outperforms the other models in segmentation 
accuracy while maintaining competitive prediction speeds. 
The VGG19U-Net shows improved performance over 
the standard U-Net, highlighting the benefits of deeper 
architectures in semantic segmentation tasks. Additionally, 
the research underlines the importance of architectural 
modifications like residual connections and deeper 
convolutional layers for enhancing segmentation accuracy. 
This study offers valuable insights into optimizing U-Net 
variants for vehicle segmentation, which can be extended 
to other real-world applications, including autonomous 
driving. These findings provide a view for future 
improvement in real-time image segmentation for complex 
environments.

Keywords: Deep learning; Sematic segmentation; Com-
puter vision; U-Net.

1. Introduction
Autonomous driving and advanced driver assistance 
systems (ADAS) has become the crucial functions 
for vehicles [1]. And image segmentation, car view 
segmentation in particular, is one of its core tech-

niques for the system to capture the road and sur-
rounding information.
Unlike more traditional object detection or im-
age classification, which only need to capture and 
classify a given set of targets or classes, the image 
segmentation aims to segment every distinct object 
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in the image [2]. While it can provide far more abundant 
and detailed information, the computational complexity 
become higher. Also, as the segmentation task is used for 
self-driving, the prediction accuracy and speed are crit-
ical. Traditional bounding box regression network, like 
Faster R-CNN or You Only Look Once (YOLO) are no 
longer feasible for this task, and more complex network, 
like Mask CNN or Fully Convolutional Network (FCN) 
replace their job [3]. The more advanced U-Net architec-
ture, originally developed for biomedical image segmen-
tation, has proven to be effective across various domains 
[4]. And there is a growing need to explore modifications 
and enhancements to the standard U-Net architecture.
This study aims to investigate the impact of two signifi-
cant modifications to the U-Net architecture for car view 
segmentation:
(1) Integrate the VGG19 architecture, known for its depth 
and strong feature extraction capabilities [5].
(2) Corporate the residual connections, which have shown 
promise in addressing the vanishing gradient problem in 
deep networks [6].
By training and comparing the standard U-Net, VG-
G19U-Net, and ResU-Net, this research seeks to under-
stand how these architectural changes affect segmentation 
performance, training dynamics, and prediction speed [7, 
8]. The study utilizes a dataset of 5000 front view images 
collected by self-driving cars, providing a realistic and 
challenging benchmark for evaluating these models, giv-
ing feasible solutions for self-driving.

2. Methodology
The purpose of this paper is to evaluate the feasibility 
and advantageous of the standard U-Net, ResU-Net and 
VGG19U-Net, from their speed of prediction and multiple 
criterions for accuracy.
For the evaluation, the dataset is sourced from Kaggle, 
which contains 1000 front view images collected by 

self-driving cars and segmented. The image and their 
masks are paired and transformed for uniformity and 
readiness. Also, regularization is applied to prevent from 
gradient vanishing and increase stability [7].

2.1 U-Net
The standard U-Net is a convolutional neural network 
modified and extended from the FCN [3].  Instead of the 
single CNN layer to build the mask in FCN, it replaces it 
with an expansive convolutional network for up sampling, 
which makes it more feasible for semantic segmentation 
[4]. The network down samples with two 3x3 convolu-
tional layers followed by an activation function, and a 
max pooling for feature extraction. At each step the fea-
ture maps are cropped and copied to combine with each 
corresponding step in up sampling after the 2x2 up-conv 
[4].

2.2 VGG19U-Net
VGG19 is a 19 layers convolutional neural network for 
classification task, containing 5 blocks in the backbone 
with 2 convolutional layers in each of the first 2 blocks, 
and 4 convolutional layers in the last 3 blocks [5]. The 
three fully connected layer in the head turns the feature 
map into vector for classification [5].
VGG19 adds 3 more layers from VGG16 and performs 
better with higher accuracy and precision, indicating that 
adding convolutional layers could increasing the network 
performance for certain dataset [9].
From this assumption, as the standard U-Net only con-
tains 2 convolutional layers in each down sampling step, 
VGG19 is integrated by replacing the four encoder blocks 
in original U-Net to the five blocks in VGG19. As shown 
in Fig. 1, the first four blocks are still cropped and concat-
enate with the corresponding up sampling block. For sym-
metry, the fifth block of the backbone serves as bottleneck 
to pass the feature from encoder to decoder.

Fig. 1 Architecture of U-Net with VGG19 Backbone
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2.3 ResU-Net
Deep Residual Network, or ResNet, is a neural network 
in strong capability for deep learning. The residual con-
nection between convolutional layers allows the gradient 
to flow back during back propagation, which effectively 
avoiding the vanishing gradient problem when number of 
layers is large [6]. Also, the Skip Connections allow the 
model to decide whether to update, compensating for the 
irreversible information loss caused by high nonlinearity 
[6].
ResUNet that accumulates the advantage of both U-Net 
and ResNet is introduced for investigation. For each block 
in both encoder and decoder, a residual connection is 
added. Also, like the standard U-Net, the ResUNet uses 
skip connections to concatenate the feature maps from the 
encoder with those in the decoder.  Unlike the ResUNet in 
Road Extraction by Deep Residual U-Net, no blocks are 
deleted, to control the experimental variables [8].

3. Training
Hyper parameters are tunned during the training to max-
imize the model performance. No overfitting are met 
during training so no weight decay is used. Loss plateaus 
are often met during training during epochs 15 to 25, es-
pecially in the VGG19UNet. This problem often occurs 
in the way what the loss remained unchanged for a few 
epochs in the plateau and explode to a high value and not 

decreasing even after multiple epochs of training, so Re-
duceLROnPlateau is used radically with patience=1 and 
factor=0.5, where after one epoch with loss non-decreas-
ing, the learning rate immediately decrease by multiple 
the factor 0.5 for punishment. Adam algorithm is used as 
optimizer, which is computed as,
	 m m gt t t? ? ? ? ? 1? ? ?← + −β β1 1 1− ( ) � (1)

	 v v gt t t← + −β β2 1 2− (1 ) 2 � (2)

	 m m

t t← −/ 1( β1
t ) � (3)

	 v v

t t← −/ 1( β2
t ) � (4)

	 θ θ γt t t t← − +−1 m v / ?(  ) � (5)

where β1,β2 are double momentum(β1,β2) to update the 
biased mean(mt ) and variance(mt ), and moving unbi-
ased means(mt) and variances(vt) of past gradients(θt−1) 
to current gradients( θt ), to guide future updates more 
effectively[10].

4. Results
The performance of the three models - U-Net, VGG19U-
Net, and ResU-Net - was evaluated using multiple criteria, 
including training and validation loss, Dice coefficient, 
Intersection over Union (IoU), and prediction speed.

4.1 Training and Validation Loss

Fig. 2 The train loss(left) and validation loss(right) for the three models to train 40 epochs
The training and validation loss curves for U-Net, VG-
G19U-Net, and ResU-Net are shown in Fig. 2, which 
compares model across 40 epochs.
All three models show rapid convergence during the first 
5 epochs at different rates. The standard U-Net begins 
with a relatively higher loss (starting at around 1.2) and 
converges more slowly compared to the other models. 
VGG19U-Net and ResU-Net has a low initial loss and 

quickly reducing to below 0.1 within the first 10 epochs. 
ResU-Net, in particular, continues to maintain a slightly 
lower loss throughout training comparing to another two 
models, indicating that the residual connections help sta-
bilize the learning process by vanishing gradients, espe-
cially in deeper layers[11].
The validation loss trend mirrors that of training loss, 
where three models show a generally decreasing trend. 
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ResU-Net exhibits the lowest validation loss, with mini-
mal fluctuations, stabilizing near 0.05. On the other hand, 
VGG19UNet performs comparably with similar trend to 
ResU-Net early on but shows a noticeable spike around 
epoch 25, where its validation loss rises before decreasing 
again. This spike could indicate a temporary overfitting 

issue or the model attempting to adjust to more complex 
features as training progresses caused by the more com-
plex and deeper VGG19 structure. And the strike is fixed 
immediately by the optimizer.

4.2 Dice Coefficient and IoU

Fig. 3 Model Comparison: Dice Coefficient(left) and IoU of the three models training for 
epochs 10, 20, 30 and 40

Dice coefficient and IoU are two different criterions to 
measure the pixel accuracy in Fig. 3. Dice coefficient 
measure the similarity between two sets (predicted and 
ground truth) with formula (2·|A∩B|)/ (|A|+|B| ). It ranges 
from 0 to 1, where 1 indicates perfect overlap. IoU also 
computes the overlap between predicted and ground truth 
masks, but with formula |A∩B|/|A∪B|.
Both measurement shows similar increasing trend in gen-
eral. ResU-Net outperforms both U-Net and VGG19UNet, 
achieving a relatively high accuracy even in only the first 
10 epochs of training, and reach a Dice Coefficient close 
to 0.9, which demonstrates the effectiveness of residual 
connections in capturing more nuanced spatial features of 
the car segmentation task. However, even the ResU-Net is 
able to capture features rapidly, the model improvement 
becomes gradual, so further tunning is needed to contin-

ue increase accuracy. VGG19UNet achieves a final Dice 
Coefficient of around 0.85, indicating better performance 
than the standard U-Net. VGG19UNet’s deeper architec-
ture enables it to better extract multi-scale features, which 
contribute to more accurate segmentation. The drop of 
the accuracy line in both measurement matches the strike 
in the loss plot, which suggests that the network’s com-
plexity may have introduced some instability. This could 
be addressed by further adjustment of hyperparameters, 
like introducing weight decay. The unmodified U-Net 
performed the worst among the models, but even between 
30 and 40 epochs, the model’s accuracy continued to im-
prove significantly. This suggests that, under the current 
parameters, there is still substantial room for learning, 
even though its learning ability is not as fast as the other 
two models.

Table 1. Average time spend for each model to predict the mask for one image

U-Net VGG19U-Net ResU-Net
Average

prediction
time per image

0.0041(s) 0.0043(s) 0.0055(s)

4.3 Prediction Speed
As shown in Table 1 In prediction speed, U-Net is the 
fastest, with an average prediction time of 0.0041 seconds 
per image. VGG19UNet follows closely with an average 
time of 0.0043 seconds, while ResU-Net is slightly slower 

at 0.0055 seconds per image. While the added complexity 
of residual connections in ResU-Net, or more layers and 
convolutional structure in VGG19U-Net slightly increases 
the inference time, this is compensated by its improved 
segmentation accuracy.
And Fig. 4 illustrates examples of the target mask and the 
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mask predicted by three models at 40 epochs of training.

Fig. 4 Illustration of the result for the three models training at 40 epochs, with the original 
image and target mask

5. Conclusion
This study has comparatively analysed the U-Net variants 
for car view segmentation and yields several significant 
findings. The ResU-Net architecture demonstrated supe-
rior performance, achieving the highest Dice coefficient 
and IoU scores, and a comparable prediction speed. The 
most rapid convergence rate and most stable learning 
curve indicates the advantage of residual connections in 
feature capturing and learning. Also, The VGG19U-Net 
showed significant improvement over the standard U-Net 
with close training speed at the same time, underlining the 
benefits of more convolutional and pooling layers for cap-
turing features in segmentation tasks. However, the occa-
sional training strike in VGG19U-Net causes the accuracy 
failing to achieve the expectations, suggest potential for 
further optimization. However, the standard U-Net, while 
performing less impressively, shows consistent improve-
ment even in later training stages, indicating untapped 
potentials with extended training.
These results make implications for the field of autono-
mous driving and ADAS. The improved accuracy brought 
by ResU-Net and VGG19U-Net enables a deeper under-
standing of the road and better object recognition in au-
tonomous driving applications, which significantly boost 
the safety of self-driving vehicles particularly in complex 
urban environments where precise segmentation is need-
ed. Also, the low trade-off between the precision and pre-

diction speed suggest that these two networks have great 
potentials in real time prediction for self-driving.
However, the prediction speed, even for the fastest U-Net, 
of 0.0041s/image(frame) is still not sufficient for real time 
tasks. 0.246 second is needed for one second of a 60fps 
video, and the previous image processing, and afterwards 
localizing and mapping, path planning and decision mak-
ing are as well time-consuming tasks. The delay from 
information capture to decision make will lead to fail of 
response to risk. So further optimization in network archi-
tecture and convolutional block design are needed. Also, 
more diverse datasets would provide insights into their 
generalization capabilities in various driving conditions.
In conclusion, this study not only advances the under-
standing of U-Net variants in car view segmentation but 
also contributes to the broader goal of enhancing auton-
omous vehicle technologies. As the automotive industry 
continues its rapid evolution towards autonomy, research 
in this domain will play an important role in shaping the 
future of transportation, promising safer roads and more 
efficient urban mobility.
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