
ISSN 2959-6157

Dean&Francis

1208

Abstract:
In today’s data-driven era, the reliability and security
of data storage have attracted much attention. The rapid
development of big data, cloud computing and Internet of
Things technology has put forward higher requirements
for the fault tolerance of data storage. Especially in critical
areas such as finance and healthcare, where data integrity
and recoverability are critical, data loss or corruption can
have catastrophic consequences.Although traditional RAID
technology improves data redundancy, its scalability, cost
effectiveness and fault tolerance efficiency are limited in
the face of big data challenges. Especially in large-scale
data centers, RAID is difficult to balance high performance
with high fault tolerance.EVENODD coding , as a new
fault-tolerant technology, improves recovery efficiency
through double parity check. However, the computational
complexity of the second parity column (Parity2) is high,
which affects the coding efficiency and resource utilization.
This research focuses on optimizing the computational
method of Parity2 in EVENODD encoding, aiming at
improving fault tolerance and reducing complexity,
providing technical support for building efficient and
reliable data storage system, and ensuring data security and
integrity.

Keywords: EVENODD Coding , Fault Tolerance Opti-
mization , Data Storage Security.

1. Introduction
Error correction codes (ECC) are critical to improv-
ing the reliability of digital communications and data
storage systems. The earliest error-correcting codes,

such as Hamming codes [1], laid the foundation for
error detection and correction. Hamming codes [1],
proposed by Richard Hamming in 1950, are capable
of detecting up to two errors and correcting one er-
ror, which led to their widespread use in early digital

Advanced Parity Calculation Techniques
in EVENODD Coding: A Comparative
Analysis of Fault Tolerance and
Computational Efficiency

Zijun Wang

Sydney Smart Technology
College, Northeastern University,
Qinghuangdao, China

*Corresponding author: zijun@ldy.
edu.rs

1

Dean&Francis

1209

Zijun Wang

systems. Subsequently, cyclic redundancy check (CRC)
became another important technique, which generates
checksums by polynomial division for detecting errors in
blocks of data. Due to its high efficiency and reliability,
this technology is widely used in network communication
protocols and data storage systems.
With the continuous development of technology, more
complex error correction codes have been introduced to
meet the needs of modern communication systems for
high reliability and high efficiency. Low-density parity
check (LDPC) codes [3] are one of the important advanc-
es. LDPC codes were first proposed by Robert Gallagher
in the 1960s and rediscovered in the 1990s. LDPC codes
represent parity matrix by sparse bipartitic graph structure
and support efficient iterative decoding algorithm, which
makes it widely used in satellite communication, wireless
network and data storage. In addition to LDPC codes,
Reed-Solomon Code [4] is also a widely used error-cor-
recting code. It is a block code based on finite field opera-
tion, which can correct multiple continuous errors in data
blocks, so it is widely used in optical disc storage, digital
television broadcasting and deep space communication to
provide powerful error correction ability.
EVENODD coding [5,7] is another important develop-
ment in error correction technology in RAID-6 systems.
RAID-6 is a storage scheme that can cope with the failure
of two disks at the same time, and EVENODD coding
[5,7] is an efficient parity check method designed for this
purpose. The EVENODD encoding, proposed by Blaum,
Bruck, and Vardy in 1995, generates two parity columns
(Parity1 and Parity2) by performing an XOR operation on
a block of data, thereby maintaining data integrity in the
event of a two-disk failure. EVENODD encoding not only
provides reliable failure protection, but also reduces the
computational overhead of parity, making it an effective
solution in large-scale storage systems.

2. Literature review
The existing EVENODD encoding method is mainly
based on the XOR operation, which is simple and efficient
and easy to implement in a variety of hardware and soft-

ware environments. In EVENODD encoding, data blocks
are organized into a matrix, which first generates Parity1
for each row, that is, performs an XOR operation on all
data blocks in that row. Next, Parity2 is generated by per-
forming an XOR operation on the diagonal data blocks in
the matrix. These two sets of parity blocks provide data
recovery capability for the RAID-6 system when two
disks fail.
The advantage of EVENODD encoding is its low compu-
tational complexity and low storage overhead. However,
this encoding approach can encounter challenges when
faced with multiple disk failures. The current parity check
architecture is designed to deal with the failure of two
disks, and the EVENODD encoding may not be sufficient-
ly resilient when three or more disks fail simultaneously.
While existing decoding algorithms can handle some cas-
es of multi-disk failure, their computational complexity
increases significantly, especially in large-scale storage
systems, which can put more pressure on real-time data
recovery. As a result, researchers are exploring more flex-
ible parity structures and more efficient decoding algo-
rithms to address the challenges in these complex scenar-
ios. While these improvements are often accompanied by
higher computational complexity and additional storage
overhead, they have significant implications in terms of
improving data reliability.

3. Basis of methods and technical mod-
els

3.1 Technical basis of EVENODD encoding
EVENODD coding [5,7] is an advanced fault-tolerant
mechanism designed for RAID-6 systems. Its core idea is
to process data blocks by clever use of XOR operations
to generate two key parity columns - Parity1 and Parity2.
These two columns of unique check data are seamlessly
added to the end of the data matrix as a double guarantee
of data integrity. Even in the extreme case that two disks
fail at the same time, the two parity columns can effec-
tively recover the lost data to ensure data reliability and
availability.

2

Dean&Francis

1210

ISSN 2959-6157

Fig.1 Method of calculating Parity1 and Parity2 based on EVENODD encoding
3.1.1 Calculation of Parity1

According to Fig.1, Parity1 is generated by performing
XOR operations on all the data blocks in each row. Sup-
pose the data matrix is D, where Dij represents the data
block in the ith row and jth column. Then, Parity1 for the
ith row can be expressed as:
	 P D D D1i i i in= ⊕ ⊕…⊕1 2 � (1)
where ⊕ denotes the bitwise XOR operation.
3.1.2 Calculation of Parity2

Meanwhile, in Fig.1, we can also explore the calculation
method of Parity2, the calculation of Parity2 is relatively
complex. It involves performing XOR operations on all
the data blocks in each column, followed by a shift oper-
ation on specific positions. The calculation formula is as

follows:
	 P D D D Shift P2 () 1j j j mj= ⊕ ⊕…⊕ ⊕1 2 () � (2)
where the Shift function represents a specific shift of Par-
ity1. The shifting strategy depends on the dimensions and
parity of the data matrix to ensure optimal fault tolerance
in the event of dual disk failures.

3.2 XOR-based approach

3.2.1 Method Overview

The core technique of EVENODD encoding is an XOR-
based approach, which generates parity mainly by bit-by-
bit exclusive-or operations. This method is computation-
ally simple and efficient, making it ideal for most data
storage applications.

3

Dean&Francis

1211

Zijun Wang

Fig.2 XOR-based method
I will introduce the XOR method in terms of Fig.2, which
is divided into three sections showing the data table in the
EVENODD encoding method, the computation of Parity1
(parity 1), and the computation of Parity2 (parity 2).(The
black square represents the binary value of 1 and the white
square represents the binary value of 0.)

1. Initial Data Configuration
At the top of the diagram is a binary data array of 4 rows
and 5 columns, each cell containing 0 or 1, making up
the basic data input. Columns represent blocks of data,
while rows reflect the specific bits in those blocks. The
EVENODD encoding mechanism uses bit-by-bit XOR
operations on a column basis to build parity.

2. The first stage check generation:
Parity1 (basic parity check)
The middle section of the figure shows the Parity1 gener-
ation process in detail. This process involves performing
XOR operations on all rows in each column (that is, each
block of data) to aggregate the results to produce a single
checksum value. This process embodies the basic feature

of Parity1, which provides basic data integrity verification
through simple XOR operations.

3. Second stage check advanced: Pari-
ty2 (enhanced parity)
The complex generation of Parity2 is described in detail
at the bottom of the figure, which is an illustration of the
uniqueness of the EVENODD encoding. Unlike Parity1,
Parity2’s calculations introduce a data shift operation,
where each bit of the original data column is pre-set be-
fore XOR is executed. This displacement, combined with
XOR, gives Parity2 greater error correction capabilities,
especially in the face of multi-disk failure scenarios,
showing higher reliability and data recovery potential.
General overview
This illustration visually shows the generation of the two
key Parity1 and Parity2 parity checks in the EVENODD
encoding mechanism. Parity1 is characterized by its sim-
plicity and efficiency, and provides basic data protection.
By introducing displacement operation, Parity2 further
enhances the complexity and fault tolerance of calibration.
The combination of the two provides a robust defense
against potential multi-disk failures for data storage sys-

4

Dean&Francis

1212

ISSN 2959-6157

tems using EVENODD encoding.
3.2.2 Calculation efficiency

The computational complexity of XOR operations is lin-
ear and each operation is independent, making it ideal for
parallel processing. Therefore, the XOR-based method has
high computational efficiency in practical applications,
especially in the case of fast parity generation.
3.2.3 Limitations

However, XOR-based approaches do not perform well
when dealing with multiple disk failures. Since XOR
operations can only provide basic parity information, the
complexity of recovery increases significantly in the case
of simultaneous loss of multiple data blocks. In addition,
XOR methods are difficult to provide adequate fault toler-
ance in the face of high density errors, such as continuous
failures.

3.3 Reed-Solomon coding method

3.3.1 Fundamentals of mathematics

Reed-Solomon (RS) coding is an error-correcting coding
method based on polynomial operations over finite fields.
It uses the principle of polynomial interpolation to provide
powerful error correction capability by attaching redun-
dant information to data blocks. RS coding can detect and
correct multiple continuous or discontinuous errors and is
widely used in high bit error rate environments.Reed-Sol-
omon (RS) coding is used to compute Parity2 in
EVENODD encoding by following a series of steps. First,
the original data is represented as a polynomial D(x) ,
where each coefficient corresponds to a segment of
data. Next, a generator polynomial G(x) is defined,
which is composed of different powers of a primitive ele-
ment from a finite field. The data polynomial D(x) is
then multiplied by the generator polynomial G(x) to pro-
duce the encoded polynomial C(x) To generate the check
code R(x) , the encoded polynomial C(x) is divided by
the generator polynomial G(x) using modulo operation,
resulting in \(R(x) = C(x) \mod G(x) \). The final encoded
result C(x) consists of the data polynomial D(x) and the
check code R(x) , expressed as C(x) = D(x) + R(x) RS
coding is then applied to each row of data, and the result-
ing check code is used as Parity2 in the EVENODD en-
coding scheme.

Fig.3 Reed-Solomon coding method
The figure is divided into two sections, showing the raw
data table and Parity2 calculated using the simplified
Reed-Solomon (RS) method. (Dark blue indicates binary
value 1, white indicates binary value 0, dark brown indi-
cates binary value 1, and light background indicates bina-
ry value 0.)
1. Original Data Table
The figure above shows a 4-row, 5-column binary data
table, where each cell contains either a 0 or a 1. This data
represents the information that needs to be stored and will
be used to calculate the parity code.
2. Calculated Parity2 (Calculated Parity2)
The figure above shows Parity2 calculated using the sim-
plified RS method. Specifically, Parity2 is computed by
performing a bitwise XOR operation on each column of
the data table. Different colored squares represent different
binary values, and in this way, the calculated check results
of each column can be visually seen.
The key to this approach is to combine multiple rows of
data through XOR operations to generate a new parity
row (Parity2). This check line can help restore the original
data in the event of a data error, especially in the case of
multi-disk failures, this method can provide additional
fault tolerance.
This diagram shows how the RS method can be used to
compute Parity2 in EVENODD encoding to improve sys-
tem reliability and data recovery.
3.3.2 Application of EVENODD

In EVENODD encodings, RS encodings can generate par-
ity columns by operations over finite fields. Specifically,
each column in the data matrix can be regarded as an ele-
ment in the finite domain, and the corresponding Parity2

5

Dean&Francis

1213

Zijun Wang

is generated by calculating the polynomial interpolation
on these elements. This method not only improves the
fault tolerance of EVENODD encoding, but also enables
the system to recover data in more complex fault scenari-
os.
3.3.3 Advantages and challenges

The main advantage of RS coding is its powerful error
correction ability, especially in the case of multi-disk
failures. However, the high computational complexity of
RS coding, especially in large-scale data storage systems,
can lead to a significant increase in computing resources.
Therefore, how to balance the fault tolerance and compu-
tational complexity of RS coding in practical applications
is an important research topic.

3.4 Matrix based approach

3.4.1 Fundamentals of Mathematics

Matrix-based methods rely on matrix operations in linear
algebra to generate parity checks. By representing blocks
of data in matrix form, parity columns can be generated
by matrix multiplication. Specifically, the data matrix D is
multiplied with the predefined encoding matrix G to pro-
duce the parity matrix P:
	 P D G= × � (3)
Among them, the design of coding matrix G directly af-
fects the generation mode and fault tolerance of parity
check.

Fig.4 Matrix based method
This diagram shows the process of calculating Parity2 in
EVENODD encoding using a matrix-based approach [11],
divided into three parts:
1. Original Data Table
The top of the figure shows a binary data table with 4
rows and 5 columns. Each cell contains either a 0 or a 1,
representing the stored data. This data table is the input
for the parity calculation.

2. Shifted Generator Matrix (Shifted
Generator Matrix, Gshifted)
The middle part of the graph shows the shifted production
matrix Gshifted . In this example, the generated matrix is a

6

Dean&Francis

1214

ISSN 2959-6157

simple identity matrix that is shifted Gshifted by shifting
each of its columns to the right. This shift operation is to
ensure that the calculation process can produce a stronger
check ability.

3. Calculated Parity2 (Calculated Pari-
ty2)
The bottom of the figure shows the final calculated Par-
ity2. This is achieved by multiplying the data table with
the shifted generation matrix, and then performing a bit-
wise XOR (module 2) operation on each column of the
result. The generated Parity2 is used as part of the data to
enhance the fault tolerance of the system.
With this matrix-based approach [11], we can better un-
derstand how to compute Parity2 in EVENODD encoding.
The introduction of shift generating matrices ensures that
Parity2 is not just a simple XOR operation, but provides
greater error correction through more complex matrix
calculations. This method can effectively deal with multi-
disk faults and improve the reliability of the data storage
system.
3.4.2 Calculation Process

In the matrix-based approach [11], the coding matrix G
can be flexibly designed according to the application re-
quirements. For example, different matrix structures (such
as Vandermonde matrix or Hadamard matrix) can be se-
lected to optimize fault tolerance in a particular scenario.
In the calculation process, Parity1 and Parity2 can be gen-
erated at the same time by matrix multiplication, which
greatly improves the coding efficiency.
3.4.3 Advantages and Challenges

The matrix-based approach is highly flexible and scalable,
and can adapt to data storage systems of different sizes.
However, the computational complexity of matrix oper-
ations, especially in large-scale data systems, can lead to
higher computational resource requirements. Therefore,
the implementation of this approach requires a trade-off
between system performance and resource consumption.
4.Experiment and model evaluation

4.1 Detailed planning of the experimental envi-
ronment
In order to comprehensively and accurately evaluate the
efficiency and reliability of different parity computing
strategies, a test platform was carefully constructed, which
integrated advanced hardware and software facilities to
ensure the objectivity and accuracy of experimental re-
sults.
l Hardware architecture: The experiment uses a high-per-
formance Intel Xeon E5-2680 v4 2.40GHz processor as
the core computing engine, supported by 128GB of RAM
to support fast processing of large data volumes, and a
500GB SSD to provide high-speed data reading and writ-
ing capabilities.
l Software environment: At the operating system level, the
stable and widely used Ubuntu 20.04 LTS was selected
to ensure the compatibility and scalability of the experi-
mental environment. In terms of programming tools, we
adopted Python 3.9 as the development language, taking
advantage of its rich library support, especially NumPy
and SciPy, which perform well in matrix operations and
greatly improve the efficiency of experiments. In addition,
a specific RS coding library has been introduced to enable
accurate simulation of Reed-Solomon coding.
4.1.2 Elaborate design of test scenarios and compre-
hensive coverage of failure modes

To fully examine the adaptability of different parity cal-
culation methods, we designed a variety of test scenarios
and simulated a variety of possible failure modes:
Single disk failure scenario: Simulate the failure of a sin-
gle disk to evaluate the performance of each method in
terms of data recovery speed and integrity.
Dual disk failure scenario: Simulate the case where both
disks fail at the same time by referring to the typical
RAID-6 configuration to test the fault tolerance capability
of the method.
Multi-disk failure extreme scenario: Further increase the
test difficulty and simulate multiple disk failures at the
same time to evaluate the ultimate recovery capability of
the method.

7

Dean&Francis

1215

Zijun Wang

4.2 In-depth analysis and discussion of experi- mental results

Fig.5 Recovery time of a single disk failure

Fig.6 Recovery time when two disks fail

8

Dean&Francis

1216

ISSN 2959-6157

Fig.7 Recovery time when multiple disks fail
4.2.1 XOR Method Performance Overview

Experimental results show that the method based on xor
performs well in both single-disk and double-disk failure
scenarios, and can quickly generate and recover parity.
• Single-disk fault recovery time: Average 0.2 seconds
• Two-disk fault recovery time: Average 0.4 seconds
• Multi-disk failure recovery time: Average 1.5 seconds
(some data cannot be recovered)
In the case of single disk and double disk failure, the XOR
method shows excellent recovery speed and stability with
its efficient XOR operation. However, in the face of multi-
disk failure, the recovery efficiency decreases significant-
ly, and the fault tolerance is limited, and some data may
not be recovered.
4.2.2 Excellence in Reed-Solomon coding

Reed-Solomon coding performed well in all test scenari-
os, especially in the case of multiple disk failures, where
it was able to fully recover data.
• Single-disk fault recovery time: Average 0.5 seconds
• Two-disk fault recovery time: Average 1.0 seconds
Multi-disk failure recovery time: Average 3.5 seconds
(100% recovery)
All in all, the Reed-Solomon code performed well in all
test scenarios, especially in the case of multi-disk failures,
and its powerful error correction ensured complete data
recovery. However, this advantage is also accompanied

by high computational complexity, resulting in relatively
long recovery times.
4.2.3 Compromise based on matrix method

The matrix-based method performs well in the case of
single and two-disk failures, and the recovery time is be-
tween the XOR and RS methods. In the multi-disk failure
scenario, the recovery performance is close to RS coding.
• Single disk fault recovery time: Average 0.3 seconds
• Two-disk fault recovery time: Average 0.7 seconds
Multi-disk failure recovery time: Average 2.8 seconds
(98% recovery)
The matrix-based method is robust in single - and two-
disk failure scenarios, and its recovery time is between
XOR and RS coding. In the extreme multi-disk failure
scenario, its recovery performance is slightly worse than
RS coding, but it can still maintain a high data recovery
rate. However, this method is relatively high in terms of
computing resource consumption and needs to be further
optimized to improve efficiency.
4.2.4 Comprehensive evaluation and prospect

Based on the above analysis, we can draw the following
conclusions: XOR method is suitable for scenarios that
are sensitive to computing resources and have a low fail-
ure rate; Reed-Solomon coding is more suitable for en-
vironments that require high data security and can afford
some computing costs. The matrix-based method shows

9

Dean&Francis

1217

Zijun Wang

good scalability and stability in large-scale systems, but
its computational efficiency still needs to be improved.
Future studies can further explore how to reduce the com-
putational complexity while maintaining the resilience to
achieve a more efficient parity computing strategy.

5. Conclusion

5.1 Summary of research results
In this study, we comprehensively evaluate the perfor-
mance of three parity calculation methods in EVENODD
encoding through a series of experiments. The experimen-
tal scenarios include single disk fault, double disk fault
and multi-disk fault, and the fault tolerance and comput-
ing efficiency of each method are investigated.
The XOR-based approach performs well in the case of
single and dual disk failures. Experimental data show
that the recovery time of the XOR method is 0.2 seconds
on average when dealing with a single disk failure, but
the recovery time increases slightly to 0.4 seconds when
dealing with a double disk failure. These results show that
the XOR method has high computational efficiency and is
suitable for dealing with simple fault scenarios. However,
in the multi-disk failure test, the recovery time increased
significantly to 1.5 seconds, and some data could not be
successfully recovered, indicating that the fault tolerance
of the XOR method is insufficient in the complex failure
scenario.
The Reed-Solomon coding method performs well in all
failure modes. The results show that the average recovery
time of a single disk failure is 0.5 seconds, the recovery
time of a double disk failure is 1.0 seconds, and the recov-
ery time increases to 3.5 seconds in the case of multiple
disk failures. Despite the increase in computation time, the
Reed-Solomon code successfully recovered 100% of the
data in all test scenarios, demonstrating its excellent fault
tolerance. However, this strong fault tolerance is accom-
panied by high computational complexity and resource
consumption, especially in large-scale data systems.
Matrix-based methods perform between XOR methods
and Reed-Solomon coding in tests. Experimental data
show that the recovery time of this method is 0.3 sec-
onds under single disk failure, 0.7 seconds under double
disk failure, and 2.8 seconds under multi-disk failure.
Although the method has a data recovery rate of 98% in
multi-disk failure scenarios, which is slightly lower than
Reed-Solomon coding, its flexibility and scalability make
it a potential application in large-scale systems. However,
like Reed-Solomon coding, matrix-based approaches also
face challenges with high computational resource require-
ments, especially when dealing with very large data matri-

ces.
Through the analysis of these experimental data, we can
draw the following conclusions: the XOR-based method
is suitable for the environment with limited computing re-
sources and relatively simple fault mode; Reed-Solomon
coding performs best in scenarios with high fault toler-
ance requirements, but needs to pay attention to its high
computational complexity and resource consumption. The
matrix-based approach provides a good balance and is
particularly suitable for large-scale data storage systems,
but its computational efficiency still needs to be further
optimized. Future research can combine the advantages of
these methods to develop more efficient and fault-tolerant
parity strategies to meet more complex data storage needs.

5.2 Far-reaching implications for future re-
search directions
The results of this study not only enrich the current the-
oretical system of data coding and fault tolerance mech-
anism, but also open up a number of potential paths for
subsequent scientific exploration. First and foremost,
future researchers can focus on the innovative practice of
hybrid coding strategies, aiming to combine the excellent
fault tolerance performance of Reed-Solomon coding with
the efficient computing power of matrix-based coding,
and conceive and design a new hybrid coding scheme
that can effectively resist complex error scenarios while
maintaining a high economy in computing resources. The
advent of this solution will undoubtedly provide more
solid technical support for dealing with the increasingly
complex multiple failure challenges in modern data stor-
age systems.
In the pursuit of maximization of computational efficien-
cy, another direction worth further discussion is to opti-
mize existing coding methods by using parallel processing
techniques and hardware acceleration strategies. Specifi-
cally, through the deployment of high-performance com-
puting clusters and the introduction of dedicated accelera-
tors such as Gpus, the processing speed of Reed-Solomon
coding and matrix-based coding algorithms on large-scale
data sets can be significantly improved, thereby reducing
the dependence of storage systems on computing resourc-
es and accelerating their widespread deployment and ap-
plication in commercial and industrial fields.
In addition, with the rise of cutting-edge technologies
such as quantum computing and DNA storage, storage sci-
ence has brought unprecedented opportunities for change.
Future research should follow the pulse of this era and
actively explore the possibility of integrating advanced
parity algorithms into these emerging storage technolo-
gies. The ultra-high density of quantum storage and the

10

Dean&Francis

1218

ISSN 2959-6157

ultra-long lifetime of DNA storage, combined with the ad-
vantages of Reed-Solomon encoding and matrix encoding
for data recovery and integrity assurance, may open up
unprecedented new paradigms for data storage and protec-
tion, especially when dealing with large, highly complex
data sets under extreme conditions.
To sum up, through the continuous cultivation and ex-
pansion of the above areas, we are expected to build a
more indestructible data protection network, provide more
efficient and reliable data protection strategies for future
storage systems, so as to enable all walks of life to move
forward steadily on the road of digital transformation and
create a smart future.

References
[1] Hamming Codes: Hamming, R. W. (1950). “Error detecting
and error correcting codes.” The Bell System Technical Journal,
29(2), 147-160.
[2] CRC: W. Wesley Peterson and D. T. Brown, “Cyclic codes
for error detection,” in Proceedings of the IRE, vol. 49, no. 1,
pp. 228-235, Jan. 1961.
[3] LDPC Codes: Gallager, R. (1962). “Low-density parity-
check codes.” IRE Transactions on Information Theory, 8(1), 21-
28.
[4] Reed-Solomon Codes: Reed, I. S., & Solomon, G. (1960).
“Polynomial codes over certain finite fields.” Journal of the
Society for Industrial and Applied Mathematics, 8(2), 300-304.
[5] EVENODD Encoding: Blaum, M., Bruck, J., & Vardy, A.
(1995). “EVENODD: An efficient scheme for tolerating double

disk failures in RAID architectures.” IEEE Transactions on
Computers, 44(2), 192-202.
[6] Enhanced EVENODD Decoding: Plank, J. S., & Xu, L.
(2003). “Optimizing Cauchy Reed-Solomon Codes for Fault-
Tolerant Network Storage Applications.” In Proceedings of the
Fifth IEEE International Symposium on Network Computing
and Applications (NCA), 173-180.
[7] Blaum, M., Bruck, J., & Vardy, A. (1995). EVENODD: An
efficient scheme for tolerating double disk failures in RAID
architectures. IEEE Transactions on Computers, 44(2), 192-202.
doi:10.1109/12.368014
[8] Xu, L., Xie, V. M., & Chien, A. A. (1999). A Hybrid Coding
Scheme for RAID Architectures: Reliability and Performance
Comparison. IEEE Transactions on Parallel and Distributed
Systems, 10(6), 645-656. doi:10.1109/71.774889
[9] Plank, J. S., & Ding, K. (2013). XOR’s Code: A Proposal
for the RAID-6 Erasure Code. Fast Memory Systems for HPC
Workshop, 1-6.
[10] Rizzo, L. (1997). Effective Erasure Codes for Reliable
Computer Communication Protocols. ACM SIGCOMM
Computer Communication Review, 27(2), 24-36. 11.
MacWilliams, F. J., & Sloane, N. J. A. (1977). The Theory of
Error-Correcting Codes. Elsevier.
[11] Blomer, J., & Kalfane, M. (1996). An XOR-based Scheme
for Erasure Codes in Storage Systems. Proceedings of the 29th
Annual ACM Symposium on Theory of Computing (STOC ’96),
63-70.
[12] Plank, J. S. (2005). The RAID-6 Liberation Codes.
Proceedings of the 4th USENIX Conference on File and Storage
Technologies (FAST ’05), 1-14.

11

