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Abstract:
With the rapid growth of users, traditional collaborative 
filtering methods continue to struggle with handling data 
sparsity and cold start issues, leading to significantly 
reduced recommendation accuracy. To address these 
persistent challenges, this study proposes a movie 
recommendation system that integrates Graph Neural 
Networks (GNNs) with temporal contextual information. 
GNNs model user-movie interactions as graph structures, 
with users and movies represented as nodes and their 
interactions as edges. By incorporating temporal context, 
the model captures dynamic user preferences that evolve 
over time, allowing for more personalized and context-
aware recommendations. The GNN model achieved an 
RMSE of 1.51, which further improved to 1.45 with 
the inclusion of temporal context, demonstrating the 
crucial role of contextual information in enhancing the 
system’s ability to predict user behavior. These findings 
highlight the substantial potential of integrating GNN 
with contextual data to significantly improve the overall 
performance of recommendation systems, especially in 
scenarios characterized by sparse data or limited user-item 
interactions.

Keywords: Graph Neural Networks; Context-aware rec-
ommendations; Movie recommendation systems.

1. Introduction
Recommendation systems have become integral 
across many industries, significantly enhancing user 
experience by providing personalized content. As 
highlighted by Hamilton et al., these systems are in-
creasingly critical in domains like e-commerce and 
streaming services such as Netflix, where they play a 

key role in improving user engagement and satisfac-
tion [1]. However, traditional Collaborative Filtering 
(CF) methods are constrained by challenges such as 
cold start and data sparsity, which limit their effec-
tiveness in practical scenarios [2].
To address these limitations, GNNs have emerged 
as a promising solution by modeling user-item inter-
actions as graph structures, allowing for the capture 
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of higher-order relationships through information propa-
gation [3]. Ma et al. demonstrated that GNNs can signifi-
cantly improve recommendation accuracy, particularly 
in data-sparse environments [4]. Additionally, contextual 
information, such as time and location, is critical in adapt-
ing recommendations to users’ dynamic behaviors [5].
This study integrates GNN with contextual information to 
overcome the limitations of CF, improving system perfor-
mance and enabling more accurate, timely recommenda-
tions by modeling user-movie interactions with temporal 
context.

2. Literature Review

2.1 Collaborative Filtering
CF methods infer user preferences using historical data 
and are typically categorized into memory-based and 
model-based approaches. As noted by Hamilton et al., 
memory-based CF encounters difficulties with data sparsi-
ty and cold start problems, particularly when new users or 
items are introduced [1]. To address these issues, Rendle 
et al. proposed model-based CF methods such as matrix 
factorization, which improves recommendation accuracy 
but still faces limitations in handling contextual informa-
tion and high-order relationships [2].

2.2 Application of Graph Neural Networks in 
Recommendation Systems
GNNs model user-item interactions as a graph, where us-
ers and items are nodes and interactions are edges. Ma et 
al. demonstrated that GNNs capture high-order relation-
ships through message-passing, improving recommen-
dation accuracy compared to traditional CF methods [4]. 
Hamilton et al. further confirmed that GNNs are highly 
effective in sparse data scenarios, as they propagate infor-
mation across nodes to learn complex patterns [1].

2.3 Context-based Recommendation
By including time as a node feature, the model can gener-
ate more personalized recommendations based on the tim-
ing of user interactions [5]. Additionally, methods such as 
trust-aware latent space mapping further enhance recom-
mendations by considering cross-domain factors and trust 
relationships, which can improve adaptability and overall 
system performance [6]. Future studies could explore in-
corporating other contextual factors, such as location or 
device type, to further enhance recommendation accuracy 
and adaptability [7].

2.4 The Combination of GNN and Contextual 

Information
Zhang et al. proposed combining GNNs with con-
text-aware models by incorporating contextual factors as 
additional nodes or by dynamically adjusting the graph 
structure. This allows GNNs to capture both complex 
user-item interactions and the influence of contextual 
information. For instance, GNNs that incorporate tempo-
ral context can provide more relevant recommendations 
based on users’ changing viewing habits over time [5, 8].

3. Methodology

3.1 Theoretical Framework
This study introduces a movie recommendation system 
that integrates Graph Neural Networks (GNNs) to enhance 
the performance of conventional Collaborative Filtering 
(CF) systems. CF methods often face challenges such as 
cold start and data sparsity, particularly when interaction 
data is limited [2]. GNNs tackle these issues by represent-
ing user-movie interactions in a graph structure, where 
users and movies are nodes, and interactions are edges 
[4]. Through information propagation within the graph, 
GNNs are able to capture complex high-order relation-
ships, improving recommendation accuracy, especially in 
data-sparse environments [4].

3.2 Graph Neural Networks
GNNs are effective in dealing with sparse data by trans-
ferring information between nodes in a graph. The SAGE-
Conv layer is employed to aggregate information from 
neighboring nodes, capturing both first-order and high-
er-order user-movie relationships [9]. This approach gen-
erates robust node embeddings, improving the system’s 
capacity to deliver precise recommendations, even when 
data is scarce [4].

3.3 Data Preprocessing
The user-movie interaction data is structured in the form 
of a graph, with users and movies depicted as nodes and 
interactions, like ratings, represented by edges [4]. Each 
node is initialized with a 16-dimensional random feature 
vector. To enhance the understanding of user preferences, 
additional metadata, such as movie genres, is incorporated 
[5].

3.4 Contextual Information
Temporal context is integrated as an additional feature to 
capture dynamic changes in user preferences over time [5]. 
By including time as a node feature, the model can gener-
ate more personalized recommendations based on the tim-
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ing of user interactions [5]. Future studies could explore 
incorporating other contextual factors, such as location or 
device type, to further enhance recommendation accuracy 
and adaptability [7].

4. Experimental result

4.1 Dataset and Preprocessing
The dataset utilized in this research includes both us-
er-movie ratings and corresponding movie metadata. Us-
er-movie interactions were structured as a graph, where 
users and movies were represented as nodes, and interac-
tions, such as ratings, were depicted as edges [4].

Table 1. Dataset Statistics

Data set Number of Users Number of movies Number of ratings
Rating dataset 1000 975 1000

Movie metadata set 1000 975

To further understand the dataset, Fig. 1 illustrates the dis-
tribution of movies across different genres, highlighting 
the dominant genres such as Drama and Comedy. This 

distribution provides insight into the variety of movie 
categories available in the dataset, which can significantly 
impact the recommendation process.

Fig. 1 Distribution of movie categories

4.2 Model Construction and Training
The model implemented in this study is a GNN with 
SAGEConv layers. This architecture allows the aggrega-
tion of neighboring node information to capture high-or-
der interactions between users and movies.
SAGEConv Layer: The first layer takes 16-dimensional 
features from the user and movie nodes, outputting 32-di-
mensional intermediate representations. The second layer 

reduces these representations to 16 dimensions. The em-
beddings are then used to predict the rating of a movie by 
a user through an inner product.
The Adam optimizer was employed during model training 
with a learning rate set at 0.01. To reduce the difference 
between predicted and actual ratings, the mean square er-
ror (MSE) was used as the loss function [10]. The model 
underwent training for 100 epochs to achieve conver-
gence.
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Fig. 2 Training loss curve
The training loss curve, shown in Fig. 2, demonstrates 
that the model’s loss decreased rapidly in the early stages 
and converged around 100 epochs, indicating successful 
learning and model stability.

4.3 Cross-Validation and Model Evaluation
To evaluate the generalization capability of the model, a 
K-Fold Cross Validation was conducted. Ma et al. sug-
gested that this method helps in preventing overfitting and 
ensuring model stability across different data splits [4].

The dataset was randomly split into five subsets. Each 
subset was used once as the validation set, while the other 
four subsets formed the training set.
The GNN was trained on the training set for each fold, 
and its performance was evaluated on the validation set.
The Root Mean Square Error (RMSE) was chosen as the 
primary evaluation metric for the model’s performance.
The results of the cross-validation are summarized in 
Table 2. The RMSE values for each fold were consistent, 
with an overall average of 1.51, indicating that the model 
has a strong ability to generalize to unseen data [4].

Table 2. The performance of the model at each fold

Folded number Verification Set RMSE
1 1.51
2 1.52
3 1.50
4 1.51
5

Average
1.51
1.51

The RMSE values for each fold were consistent, with an 
overall average of 1.51, indicating that the model has a 
strong ability to generalize to unseen data.

4.4 Contextual Information Integration
Temporal context was integrated into the GNN model to 
capture dynamic changes in user behavior over time. This 
addition allows the model to adapt its recommendations 
based on the time of interaction, such as different viewing 
preferences during the day or night, or between weekdays 
and weekends [7]. When temporal context was incorpo-

rated, the model’s RMSE improved from 1.51 to 1.45, 
demonstrating that the introduction of temporal informa-
tion enhances recommendation accuracy.
As shown in Fig 3, the chart illustrates how user ratings 
are distributed across various categories, providing insight 
into overall rating behavior. Additionally, Fig. 4 visualiz-
es the variation in user rating quantities, highlighting the 
changes in viewing patterns over time. These visual charts 
help illustrate the distribution of user ratings and provide 
a basis for the improved performance of the context-aware 
GNN model.
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Fig. 3 Distribution of User Ratings

Fig. 4 Box plot of user rating quantity

5. Result
In this study, a movie recommendation system was con-
structed using GNNs combined with contextual infor-
mation. To evaluate the model’s performance, a five-fold 
cross-validation method was employed, using the RMSE 
as the primary evaluation metric.

5.1 Model Training Process
Training was conducted using the Adam optimizer, with 
a learning rate set at 0.01, while MSE was employed as 
the loss function [10]. As shown in Fig. 2, the model con-
verged after approximately 100 epochs, indicating that it 
effectively learned the user-item interactions. The rapid 
decrease in loss and stable convergence demonstrate the 
robustness of the model, consistent with the findings of 
Ma et al. regarding GNN model performance [4]. Overall, 

the speed of convergence and the stability of the model 
provide a solid foundation for subsequent recommenda-
tion tasks.

5.2 Five-fold cross validation results
To validate the generalization capability of the model, 
five-fold cross-validation was conducted [4]. The results 
showed consistent RMSE values across the folds, with an 
average RMSE of 1.51, demonstrating stable performance 
across different datasets. Compared to the traditional 
collaborative filtering model proposed by Rendle et al., 
the GNN model showed a clear advantage in handling 
data sparsity [2]. As illustrated in Fig. 5, the GNN mod-
el outperforms the CF model in terms of RMSE, further 
confirming the superiority of GNN in sparse data environ-
ments [8].
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Fig. 5 Line graph comparing RMSE of GNN and CF models

5.3 Model Performance Comparison
Experiments compared the GNN model to traditional CF, 
where the GNN achieved an average RMSE of 1.51, out-
performing CF’s 1.75. This confirms the superior accuracy 
of the GNN model.
CF relies on direct user-item ratings and performs well 
in data-rich environments but struggles with sparse data 
due to its dependence on explicit interactions. In contrast, 
GNN models user-item interactions as a graph, capturing 
high-order relationships through message-passing [8]. 
Even with limited data, GNNs propagate information 
through the graph, using indirect relationships to generate 
more accurate embeddings, maintaining strong perfor-
mance in sparse data environments. GNN’s ability to 
aggregate neighborhood information also captures com-

plex, indirect interactions, such as the “friends of friends” 
effect, which improves recommendations in data-sparse 
scenarios.
As shown in Fig. 5, the GNN consistently outperforms CF 
across all tests, especially in sparse data scenarios, further 
validating its advantages over traditional CF models.

5.4 Impact of Contextual Information
An evaluation was conducted to assess the impact of add-
ing contextual information, such as time, on model perfor-
mance. Without contextual information, the GNN model 
achieved an average RMSE of 1.51. After incorporating 
time as a contextual feature, the RMSE improved to 1.45, 
highlighting that temporal context enhances recommenda-
tion accuracy [7].

Incorporating temporal data allows the model to account for shifts in user preferences over different time frames, such 
as changes in behavior between weekdays and weekends. This enables the GNN model to provide more customized and 
timely recommendations, offering a distinct advantage in scenarios where time-sensitive recommendations are crucial [2].

6. Conclusion
This study proposes a GNN-based movie recommendation 
system enhanced with contextual information. Results 
show that GNN outperforms CF, particularly in sparse 
data scenarios, by capturing complex user-movie interac-
tions. Incorporating contextual factors, like time, further 
improves personalization by adapting to users’ changing 
preferences. However, this study is limited by the use of 
only time as context; future work could include other fac-
tors such as location and device. Additionally, improving 
the model’s interpretability remains a challenge. Future 
research may explore more diverse contexts, complex 
GNN architectures, and reinforcement learning to enhance 

the adaptability and personalization.
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