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Abstract:
Autonomous driving refers to the capability of a vehicle 
to operate independently, without human intervention 
through the integration of both hardware and software 
systems. Radar technology is crucial in hardware detection. 
This essay seeks to thoroughly examine radar integration 
technology in self-driving cars and offers comprehensive 
reviews of technology and future directions. It will 
encompass an overview of radar components, various 
detection methodology, and their practical application in 
autonomous vehicles. Additionally, the type of radar and 
its approach of measurement are also mentioned briefly 
in the text. In the last section, two models are applied to 
test the performance of radar object detection. Based on 
the calculation of accuracy, precision and recall from the 
nuScenes dataset, The RCS-based model and machine 
learning based are designed for virtual testing. The results 
evaluate the performance of two radar models, indicating 
the great performance and accuracy of identification of 
the machine learning model yet over-optimization of RCS 
model.

Keywords: radar, autonomous vehicles, autonomous 
driving

1. Introduction
Over the last ten years, autonomous driving has 
grown to be one of the most widely used transpor-
tation solutions in terms of lowering accidents and 
traffic, drawing hundreds of businesses that are solely 
focused on this field. The size of the global autono-
mous vehicle market was estimated to be worth USD 
1,500.3 billion in 2022. Over the course of the pro-

jection year, it is expected to increase at a compound 
annual growth rate of 32.3%, from USD 1,921.1 bil-
lion in 2023 to USD 13,632.4 billion by 2030.
However, some challenges are still required to im-
prove the performance of intelligent cars, including 
the detection of scenarios for complex road condi-
tions using three-dimensional object detection and re-
sistance to adverse weather conditions. Here, radar is 

Integration of Radar Technology in 
Autonomous Driving: A Comprehensive 
Review of Applications, Methods, and 
Future Directions

Bairui Zhang

School of Ulink Collge, Shanghai, 
China

*Corresponding author: bairui.
zhang@ulink.cn

1



Dean&Francis

1244

ISSN 2959-6157

an excellent component that can be applied in autonomous 
vehicles for its simplicity, cheapness and high resolution. 
Applying sensor fusion technology, the advantages of var-
ious sensors is compensated to each other to upgrade the 
overall performance. Typically, the radar, Lidar, ultrasonic 
sensor, camera, GPU and IMU are combined together 
to map the virtual graph for object detection and further 
analysis[1].
In this essay, the principle of autonomous driving is 
presented in section 2. Precise demonstrations of radar , 
involving the type, working principle and application are 
shown in the rear sections.

2. Literature Review

2.1 Overview of Autonomous Driving Technolo-
gy
A wide range of technologies, which can be divided into 
many main categories, are integrated into self-driving 
technology, including motion control, path planning, pe-
destrian detection, and environment perception. LiDAR, 
cameras, and radars are commonly used to monitor the 
surroundings, allowing for the collection of copious 
amounts of data on object shape, velocity, and distance[1].
Various imaging models are used for object detection. 
For example, there are two types of point-voxel-based 3D 
object detection: single-stage and second-stage detection. 
While single-stage detectors combine these procedures, 
second-stage detectors incorporate region proposal and 
classification stages. Second-stage detection techniques 
like R-CNN, Fast R-CNN, and Faster R-CNN give up ac-
curacy for time economy. On the other hand, single-stage 
approaches such as SSD and YOLO provide faster detec-
tion at the expense of reduced resolution, accuracy, and 
capacity to detect smaller objects[2].
Using GPS data, path generation can be optimized with 
the spline interpolation method, which offers advantages 
such as smooth curves and consistent vehicle move-
ment[3]. Motion planning, on the other hand, can be 
facilitated through artificial intelligence, sampling-based 
approaches like fuzzy sliding mode control, or discrete 
optimization control. Thus, environmental monitoring 
forms the foundation of autonomous vehicle technology.

2.2 Brief History and Development of Radar
The initial automotive radars were introduced in the 
1980s for automated cruise control (ACC) and parking 
assistance. Radars were utilized in collision warning sys-
tems operating at 24 GHz. Soon, the introduction of 77 
GHz radars provided advantages such as wider bandwidth 
and reduced environmental attenuation. Early radar sys-

tems relied on the Gunn diode, which was expensive and 
cumbersome. However, the development of Monolithic 
Microwave Integrated Circuits (MMICs) enabled a broad 
range of radar functionalities within a compact space, sup-
porting a variety of frequencies. This innovation facilitat-
ed the broader adoption of automotive applications. With 
advancements in high-frequency silicon technology, ra-
dars can now be manufactured using SiGe and RF CMOS 
technologies, which are more cost-effective and porta-
ble[4]. Currently, sensor fusion technology is employed to 
enhance the capabilities of self-driving cars by integrating 
various sensors, including LiDAR, cameras, and radars, to 
improve overall detection performance and efficacy.

2.3 Radar Application and its Functionality
Environment perception involves the cooperation of sev-
eral sensors.
Firstly, Millimeter wave radar, applying several approach-
es like frequency modulation continuous and frequency 
shift keying(FSK), can measure the velocity and distance 
simultaneously and perform well in all kinds of weather 
with high resolution and fast speed[5]. With the aid of 
multi-range radar technology, versatility in range detec-
tion can be achieved which covers various ranges and is 
effective in complex environments[6].
Next, Laser radar, also called lidar, can detect the environ-
ment using various methods, including pulse, amplitude 
modulation and frequency modulation, to measure the 
distance. This provides superior range resolution and ac-
curacy for detailed environment mapping. However, it is 
heavily limited by weather conditions and daylight inten-
sity[7].
Consequently, sensor fusion is a crucial technology that 
enables several sensors to cooperate to increase the preci-
sion of radar, Lidar, cameras, and other sensors. Further-
more, sensor fusion enhances the stability of perception 
and creates a fundamental base for advanced modeling. 
For example, the camera has high-resolution images yet 
works poorly in dark conditions;  the Lidar has great range 
resolution and long range detection but may struggle with 
severe weather; the radar provides comprehensive en-
hancement in all kinds of categories though being afraid 
of long-range detection. A combination of different sen-
sors may improve reliability and gain immunity to harsh 
weather, like fog, rain and snow[8].

2.4 Future Challenge and Outlook
Now, autonomous driving is still facing significant chal-
lenges and is waiting to be overcome, including the accu-
racy of environment perception, real-time and capacity to 
resist disturbance. Improvement of hardware systems of 
detection, V2X (Vehicle-to-everything) and application of 
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predictive modelling is the future objectives to solve the 
drawbacks of the current situation.

3. Overview of Radar System

3.1 Introduction to Modern Radar Technology

3.1.1 Millimeter wave FMCW  radar

Millimeter wave FMCW radar is a kind of radar that 
works in the range of 30 to 300GHz, typically 76 to 
77GHz, with the approach of frequency modulation for 
continuous waves to estimate the distance and velocity. 
Specifically, the velocity of the target can be measured us-
ing Doppler effect and distance can be calculated depend-
ing on the chirp of the radar.
The radial velocity vr  (the relative velocity between the 
object and the host vehicles) can be determined using 
Doppler frequencies:

 fd = 2 v

r  (1)

  refers to the wavelength of the transmitted signal and 
fd  refers to doppler frequency.
The distance can be estimated using triangular waveform. 
The intermediate frequency fbeat  which is the difference of 
frequency of between transmitted and received signal can 
be used combining with the chirp rate which is the gradi-
ent of the modulated frequency, frequency modulation 
bandwidth ∆F  /time period of transmitted signal Tm  for 
the calculation of distance.
The equation is given by:

 R =
∆
T c f
F
m beat• •

2
 (2)

Range resolution ∆R  can be calculated using the formula:

 ∆ =R
2?

c
F

 (3)

For the bandwidth of 150MHz, the range resolution will 
reach 1m which is not enough for precise and accurate 
detection of self-driving. But it has a continuous operation 
which has real-time detection and adaption in all kinds of 
weather with a few degrade in working ability[9].
3.1.2 Lidar

Environmental perception of autonomous cars requires 
high accuracy leading to the introduction of Lidar com-
pensated with cameras and radar. Using different ap-
proaches, Lidar can be further operated in two methods:
1) Time-of-Flight(ToF) Lidar
It is a kind of radar system that demands the output of a 
short pulse with amplitude modulated to measure the dis-

tance, azimuth and verticle angle based on the strength of 
received signal.
2) FMCW Lidar
The wavelength is the main distinction between FMCW 
LiDAR’s and millimeter-wave FMCW radar’s operating 
principles. LiDAR operates in the infrared spectrum, 
whereas millimeter-wave radar operates in the millime-
ter-wave range. Distance and velocity can be calculated 
by examining the reflected signals’ beat frequency.
Laser is generated through the laser diode when electric 
current passes through it leading to oscillation of photons 
due to electron-hole recombination. There are two kinds 
of laser sources, which is Edge-emitting laser(EEL) and 
surface-emitting semiconductor laser (VCSEL) where 
the first one emits a cyclical waveform and the latter one 
transmits an elliptical waveform requiring further wave-
form transformation. A wavelength of 850-950nm (near 
infrared) or 1550nm (short wave infrared) is produced 
because of the concern of cost, safety and environment 
attenuation.
Photodiode is used for the detection of echo signal, like 
PIN diode, avalanche photodiode, silicon photon multipli-
er and so forth. The primary principle is the conversion of 
received photons to electricity through PN junction.
Lidar provides good performance in range resolution and 
availability in different light conditions, unlike the camer-
as that work poorly in dark conditions. However, the cost 
is the main obstacle in the development of Lidar which is 
commonly thousands of dollars. Further, it works poorly 
in adverse weather conditions due to the impedance of 
particles including snow, droplets and dust. Interference 
with other laser radars is also a concern[10].
3.1.3 Ultrasonic sensor

Ultrasonic sensor uses ultrasonic sound for the measure-
ment of short-range distance with working wavelength of 
about 40 to 50kHz which is beyond the limit of human 
hearing. This sensor is ideal for the driving application 
for short range detection like parking assistance and blind 
spot detection. The distance can be calculated using ToF 
which is cost-effective and simple. However, limitation on 
small range detection is serious for the severe attenuation 
of environment, like humidity and temperature. Interfer-
ence of noise may also a challenge in measuring the dis-
tance[11].

3.2 Transceiver for Radar
A Voltage Controlled Oscillator (VCO) generates an oper-
ating frequency that can be adjusted by varying the input 
voltage. This can be achieved using a varactor diode. 
The VCO output is then processed through a frequency 
synthesizer, which includes components such as a phase-
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locked loop (PLL), frequency mixer, low-pass filter, and 
dielectric resonator oscillator. This process allows for the 
generation of a specific frequency waveform with stable 
and accurate values, minimizing sensitivity to temperature 
changes[10].
The signal received by the antenna typically undergoes 
noise cancellation before being sent to a mixer. The mixer 
produces an intermediate frequency (IF) by comparing 
the signal with the frequency from the VCO, using a ring 
modulator. The IF allows for the estimation of range and 
velocity in FMCW radar systems. Final processing steps, 
including low-pass filtering and analog-to-digital conver-
sion (ADC), enable the calculation of these parameters.
Utilizing a Multiple Input Multiple Output (MIMO) sys-
tem with a modified four-port balanced antipodal Vivaldi 
antenna enhances detection capabilities. This configura-
tion provides 90-degree field-of-view for each antenna, 
enabling 360-degree detection and pattern diversity. This 
design improves sensitivity to the angle of the received 
signal, leading to enhanced angular resolution[12].

3.3 noise Filter and Cancellation
Noise cancellation is significant in the calculation of radar 
for the correct identification of object detection and avoid-
ance in erroneous readings leading to concern for safety. 
Here are some methods of noise cancellation technology.
In order to reduce the impact on the measurement, clutter 
suppression uses an approach to identify the clutter and 
compress it. By comparing the received signal with the 
signal from a high-clutter environment, clutter can be 
recognized. Constant false alarm rate (CFAR) algorithms 
can be used to further filter the output, making it easier to 
detect clutter and keeping the false alarm rate low[13].
Adaptive filtering utilizes the technology where filter 
parameter is adjusted automatically according to the prop-
erty of input signal. This enables the adaptation of filter in 
changing environment to achieve the optimistic approach 
from the received signal to the ideal processing signal 
continuously by updating the parameters[14].

4. Application of Radar

4.1 Three-dimensional Object Detection
3D object detection has 3 types of method, separately 
point-based, grid-based and point-voxel-based.
4.1.1 Point-based 3D object detection

For point-based 3D object detection, localized object 
can be illustrated in three-dimentional space using point 
cloud data with the application of Lidar. Raw data can be 
directly processed into 3D cartesian coordinates (x,y,z) 

to represent the location of the object in the point cloud. 
Additional data may also be represented like the color, 
materials and shapes.
Then applying point cloud sampling techniques, like far-
thest Point sampling(FPS), efficiency of processing im-
proves which provides a uniform density of points while 
remaining important features. After that, the feature learn-
ing can be used which is a machine learning algorithms 
allowing automatic extraction of relevant features from 
raw data. This avoid the human intervention and makes 
the classification and identification process intelligent and 
efficient, like PointNet that automatically learn hierarchi-
cal features including edges, textures and shapes at differ-
ent layers of the network.
Finally, the bounding boxes will be generated containing 
objects of interest with the label of measuring value that 
includes the location, size and class.
4.1.2 grid-based 3D object detection

Grid-based 3D detection localize the object in three-di-
mensional space by dividing the area into a grid format 
such as voxels(3D grid cells), Pillars and Bird’s-Eye 
View. Neural networks like Convolutional Neural Net-
works(CNNs) can be applied for feature learning and fi-
nally output the object prediction.
4.1.3 Point-voxel based 3D object detection

Point-voxel based 3D object detection is a hybrid tech-
nology that combines the point-based and voxel-based 
methods for the detection of object, compensating for the 
shortcomings of each and achieving both high efficiency 
and detailed accuracy. There are two primary approaches: 
single-stage and two-stage detection.
In the single-stage method, voxel features and point 
clouds are processed in a single step, using point-to-voxel 
and voxel-to-point transformations to extract features. For 
two-stage detection, the process begins by generating 3D 
object proposals through a voxel-based detector, followed 
by a refinement step using point cloud data. The refined 
data is then used for the final object prediction.
This combination of methods improves detection accuracy 
while maintaining efficient processing[15].

4.2 Advanced Driver Assistance Systems
Advanced Driver Assistance Systems(ADAS) are a col-
lection of technologies to enhance driving safety and 
experience by applying various sensors. Utilizing the sen-
sor integration, reliability and accuracy of detection may 
improve because sensor fusion technology can gather ex-
cessive and comprehensive information while compensat-
ing for their weakness. Here are some driving assistance 
features: adaptive cruise control(ACC), lane keeping 
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assist(LKA), blind spot detection(BSD), automatic emer-
gency braking(AEB) and traffic sign recognition(TSR).
4.2.1 Sensor fusion

The first step is to identify the measurement target for 
each sensor. Millimeter-wave radar can estimate both dis-
tance and velocity simultaneously and performs well in 
adverse weather, though it is prone to frequency interfer-
ence and has a high false alarm rate from metallic objects 
like road signs. Cameras provide detailed information on 
colour, texture, and shape, making them valuable for deep 
learning applications, but they are limited in range resolu-
tion and struggle in poor weather. LiDAR is useful for 3D 
object detection and creating detailed 3D maps to recog-
nize both dynamic and static elements, such as lanes and 
vehicles. However, it is expensive and can be hindered 
by severe weather conditions. Ultrasonic sensors excel in 
short-range estimation but are also affected by weather 
and limited in detection range. GPS provides precise re-
al-time positioning by receiving signals from multiple sat-
ellites, while the Inertial Measurement Unit (IMU) mea-
sures acceleration and angular velocity, supplying motion 
data.
Once these sensors collect data, sensor fusion technology 
combines and processes it, sending it to various systems 
for further operation.
4.2.2 ACC

ACC can automatically adjust the car’s speed in the safety 
zone according to the distance from the vehicle ahead. By 
monitoring the distance in front of the car from the fused 
data utilizing ultrasonic sensors or cameras, speed regula-
tion can be achieved for safety in the following distance.
4.2.3 LKA

LKA is a system that helps the driver maintain within 
its lane on the road. Based on the host vehicles current 
driving speed and direction, trajectory can be estimated to 
create the situation model that whether the car follows the 
maneuver of the centre of the lane or shift to one sides. 
If the system detects that unintentional movement occurs 
without the turn of signals, a feedback will be provided, 
commonly in the form of visual alerts or vibration of 
wheel.
4.2.4 AEB

The AEB systems combine the cameras, sensors and al-
gorithms to avoid potential collisions and automatically 
apply the brakes to prevent accidents. Using the real-time 
fusion data and the construction of 3D mapping, the mea-
surement of the velocity of the vehicles relative to the oth-
er vehicles or obstacles is created. Then the algorithm can 
predict the potential collisions according to the motion of 

the object and the host vehicles. If the collision is antici-
pated and the driver does not take the corresponding ac-
tion, the AEB will start. Before the initiation of AEB, the 
auditory alert may be provided to warn the driver. Then 
the automatic braking may be applied to avoid accidents 
if drivers do not respond correctly. Integrated with other 
systems like ACC and LKA, the working performance of 
the vehicle will be improved[16].

5. Test and Evaluation Model
Radar detection plays a key role in autonomous driving. 
Driving datasets, like the nuScenes dataset, including 
numerous and diverse annotated data with over 1000 la-
belled scenes and 23 object classes, improve the driving 
perception which plays an important role in sensor model. 
Additionally, it provides environmental conditions, like 
daytime and weather conditions.

5.1 the nuScenes Dataset
Two Renault Zoe supermini electric vehicles equipped 
with the same sensor configuration are used to drive in 
Boston and Singapore in order to gather the data set. The 
table displays the type of sensor that was used. Addition-
ally, the figure shows how the sensor is configured. The 
field of view (FOV) of the front, side, and rear cameras is 
70 degrees, while the rear camera has 110 degrees and a 
lidar on top of 360 degrees of FOV.

5.2 Hardware of Models
On the long range radar sensor, the model evaluations 
are generally dependable (Continental ARS 408-21). The 
ego automobile has five different radars: front, front right, 
front left, back right, and back left. The measurement ap-
proach of FMCW yields an operating frequency range of 
77GHz to 78GHz. The capture frequency of 13 Hz results 
in a maximum detection range that is less than 250 meters.
The reflected signals are analyzed in various steps to 
determine the most representative location when the re-
ceived signals are collected in cluster mode. Radar is test-
ed in conjunction with other sensors to ensure its function-
ality. These include six RGB cameras (Balser acA1600-
60gc) with a 12Hz capture frequency and a 1/1.8” CMOs 
sensor with 1600 x 900 resolution, as well as one full view 
LIDAR (Velodyne HDL32E, 20Hz capture frequency, 32 
beams, range<70m up to 2cm accuracy, points per second 
up to 1.4 million). As shown in the Fig 1[17].
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Fig 1. Sensor setup for nuScenes data collection

5.3 Important Parameters

5.2.1 Precision of radar clusters

It is defined as the ratio of true positive radar cluster de-
tections to the total number of radar cluster detections. 
Here is the step of taking the measurement
1. Transforming the coordinates of the radar cluster of all 
object bounding boxes into the coordinate system of indi-
vidual radar
2. Then check whether the coordinates fall within the vol-
ume of extended object bounding box( commonly 20% 
increase)
3. select and count the number of true positives(TP) which 
refers to the cluster assigned in the labelled object bound-
ing box and false positives(FP) that are not defined to any 
object.
FP may be caused by the object that is not contained in 
the nuScenes classes, like the infrastructure, such as build-
ings, bridges, railways and so forth.

5.2.2 Radar reflection properties of objects
It alludes to the capacity of reflected waves to reach sen-
sors from varied objects, which is crucial for evaluating 
how well a radar system can locate and identify an object 
in a variety of settings. To study the radar reflection quali-
ties, two further factors are needed: the radar cross section 
(RCS) and the number of clusters (NC).
1. Convert each item bounding box’s radar cluster coordi-
nates into the coordinate system of a single radar
2. If one or more clusters are assigned to an item, it is said 
to have been discovered. The cluster points that lie inside 
the enlarged bounding box are regarded as the correspond-
ing object.
3. The yaw angle—that is, the angle between the radar 
line of sight and the object’s orientation—is determined.
4. For every object that is detected, the number of clusters 
NC that remain within the bounding box is computed.
5. For each item, the total RCS value of every cluster 
point to the object is determined.

Figure 2. Distribution of number of cluster points nC for each object class
From the Figure (2), 1 cluster point is probable for almost all classes. Typically, small objects have fewer NC and 
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larger objects have larger NC which the big vehicle can 
range from 15 to 20 NC.

table 1. average RCS value of each object class

Static object 4.81dBsm
pedestrian 1.74dBsm

bike 3.46dBsm
Normal vehicle 8.98dBsm

Big vehicle 19.97dBsm

Hence, according to the table1 , conclusion can be made 
that larger the objects, higher the RCS.
5.2.3 Visibility and occlusion for radar

Bounding boxes and radar FOV are utilized to calculate 
visibility. Two crucial characteristics are required when-
ever an object is located in the field of view (FOV): the 
relative viewable area (VIS), which indicates the region 

that is not obscured, and the number of occluders (NOCC).
The ratio of objects identified to total objects in the radar’s 
field of view is known as detection probability. In addition 
to the weather, object classes, and relative velocity that 
are predicted for detection in the nuScenes dataset, the 
VIS and NOCC are used in the computation of detection 
probability.

Table 2. Detection probability in different NOCCs, relative velocity and VIS

NOCC Detection probability%
0 33.59
1 26.96
2 22.88
3 20.04
4 19.29
5 19.56
6 19.25
7 19.59
8 19.18
9 23.41

V(m/s) Detection probability%
0-0.5 26.04

0.5-1.5 13.06
1.5-2.5 22.19
2.5-3.5 54.85
3.5-4.5 59.01
4.5-5.5 59.50
5.5-6.5 60.47
6.5-7.5 60.21
7.5-8.5 60.21
8.5-9.5 59.62
9.5-10.5 54.66
10.5-11.5 49.36
11.5-12.5 49.91
12.5-13.5 45.74
13.5-14.5 44.90
14.5-15.5 43.44
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15.5-16.5 37.91
16.5-17.5 38.22
17.5-18.5 34.91
18.5-19.5 40.33

VIS% Detection probability%
0 7.26
10 26.06
20 34.08
30 37.94
40 38.14
50 36.73
60 35.77
70 33.73
80 30.82
90 28.65
100 34.28

5.3 Real-world Performance
In the table2 , the probability of detection can be ob-
served in various conditions. As there are no occluders 
which NOCC is 0, the detection probability is 33.59% yet 
whenever NOCC is 9, detection probability decreases to 
23.41% which is still have a relatively good performance. 
For VIS at 0%, it is impossible to be detected. However, 
low VIS has a minor influence in the detection probability. 
Furthermore, the detection probability of higher relative 
velocity is obviously higher than that in lower speed be-
cause of the minor Doppler frequency which is hard to 
discover by the receiver. The above analyses are fully 
based on the Continental-ARS-408-21, illustrating the sta-
bility of detection in different environmental conditions.

5.4 Related Radar Model

5.4.1 RCS-based radar model

This model compared the value from ground-truth object 
list in environmental simulation and the minimum value 
of RCS to justify whether the object is detected, where the 
minimum parameter is processed and provided by nuS-
cenes data set.
5.4.2 ML-based radar model

Based on the ground-truth object list and environment 
parametres provided by environment simulation, input 
parameters are collected by the simulated sensor. Then, 
the machine learning algorithm is trained using nuScenes 
dataset so that a balance representation is shown for the 
test of detected and undetected objects.

The types of machine learning algorithms used are Linear 
Support Vector Classifier(SVC), random forest model and 
gradient boosting model.

5.5 Evaluation of the Model
Using the tested dataset, the following parameters can be 
calculated for the evaluation of radar models:
True positives(TP): amount of correctly detected objects
False positives(FP): amount of wrongly detected objects
True negatives(TN): amount of correct undetected objects
False negatives(FN): amount of wrongly undetected ob-
jects
Accuracy:

 Accuracy =
TP FP TN FN+ + +

TP TN+  (4)

Precision:

 Precision =
TP FP

TP
+

 (5)

Recall:

 Recall =
TP FN

TP
+

 (6)

Accuracy means that the the probability of correct detec-
tion for overall data. Precision indicates that as an object 
is detected, it is likely to be correct. Recall inclines how 
well the model performs to capture the positive instances 
among the true positives and false negatives.
For RCS-based model, the accuracy is 51.03%, precision 
is 50.67% and recall is 87.91%.
For linear SVC model, the accuracy is 69.58%, precision 
is 65.41% and recall is 83.49%.
For random forest model, the accuracy is 83.35%, preci-
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sion is 82.46% and recall is 84.86%.
For gradient boosting model, the accuracy is 85.50%, pre-
cision is 85.18% and recall is 86.06%.
According to the data, RCS-based model requires less in-
put data but has a significant low accuracy and precision 
relative to the ML-based model
The ML-based models, especially random forest and gra-
dient boosting algorithm, has a good overall performance 
of detection by considering environmental factors and 
multiple objects. Therefore, it is much more suitable for 
virtual testing of ADAS and AD because of their high reli-
ability to deal with the complex scenarios[18].

6. Conclusion
Radar technology plays a crucial role in various fields, 
particularly in autonomous driving, where it helps nav-
igate complex environments. It has been used in ADAS 
for several decades, supporting functions such as ACC, 
LKA, and AEB. With advancements in integrated circuits 
and multi-sensor fusion technology, radar performance 
has significantly improved, providing higher-resolution 
imaging and more detailed information. Multi-range radar 
allows self-driving cars to operate in more complex sce-
narios, enabling precise detection at various distances.
More recently, 4D radar technology has emerged, offering 
not only distance measurement but also the ability to de-
termine azimuth and elevation angles. This is particularly 
useful for distinguishing between objects on different 
planes, such as overpasses with slopes.
Looking ahead, autonomous cars are expected to reach 
Level 5 autonomy. Integrating radar with artificial intel-
ligence is seen as a key trend, as AI enhances the inter-
pretation of radar signals, improves object classification, 
strengthens environmental sensing, and anticipates future 
trajectories. There will also be a continued focus on re-
ducing the cost and size of radar systems and mitigating 
signal interference to improve overall performance, ben-
efiting both commercial applications and broader societal 
needs.
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