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Abstract:
Despite the difficulties associated with data processing, 
fNIRS technology shows promise for advancing cognitive 
studies and Parkinson’s disease research through the 
integration of deep learning techniques. The veracity 
and dependability of fNIRS data are contingent upon 
meticulous data collection, robust signal processing, and 
an acknowledgement of its inferior spatial resolution 
and restricted penetration depth in comparison to fMRI. 
The integration of resting and task state analyses using 
fNIRS provides a detailed insight into Parkinson’s disease, 
elucidating both the intrinsic brain connectivity disruptions 
and the dynamic responses to cognitive challenges. This 
enhances the diagnostic and treatment strategies employed 
in this field. The integration of fNIRS with EEG, motion 
capture, and advanced data analysis techniques markedly 
enhances the diagnostic accuracy of Parkinson’s disease. 
This is achieved by revealing distinct brain connectivity 
states and movement patterns, thereby paving the way for 
more sophisticated diagnostic and treatment approaches. 
The effective management of motion artefacts in fNIRS 
data for Parkinson’s disease research is achieved through 
the utilisation of advanced algorithms, including single-
channel MAR, band-pass filtering and PCA. Collectively, 
these algorithms enhance the signal quality and facilitate 
the interpretability of brain activity patterns.

Keywords: fNIRS; Parkinson’s disease; deep learning 
techniques; diagnostic accuracy.

1. Introduction
Functional near-infrared spectroscopy (fNIRS) is a 
non-invasive and safe neuroimaging technique for 
monitoring brain activity. In comparison to other 

neuroimaging techniques, such as functional magnet-
ic resonance imaging (fMRI) and electroencephalog-
raphy/magnetoencephalography (EEG/MEG), fNIRS 
is a non-invasive and safe method that can be used in 
conjunction with body movements and is highly por-
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table, which makes it an ideal choice for a variety of ap-
plications. It is suitable for all possible participant groups, 
from newborns to the elderly, as well as for a wide range 
of experimental setups, both indoors and outdoors [1]. 
Functional near-infrared spectroscopy (fNIRS) measures 
the concentration of blood oxygen to continuously and 
non-invasively monitor brain function [2].
fNIRS data acquisition is based on the optical proper-
ties of brain tissues and hemodynamic responses. It uses 
near-infrared light (650-950 nm wavelengths) to penetrate 
the skull and brain tissues. This light is absorbed differ-
ently by oxygenated (HbO) and deoxygenated (HbR) he-
moglobin. When a brain region activates, local blood flow 
increases, changing HbO and HbR concentrations. fNIRS 
devices emit light from sources on the scalp and detect 
reflected light using detectors. By measuring light inten-
sity at different wavelengths, fNIRS quantifies changes in 
HbO and HbR concentrations, indirectly indicating neural 
activity. Multiple source-detector pairs form channels, 
providing spatial information about brain activity across 
different regions with high temporal resolution.
Significant advancements have been made in the develop-
ment and application of fNIRS technology. For instance, 
to enhance the spatial resolution of imaging and to derive 
more efficacious data on brain function, multi-distance 
probe configurations have been devised and the modified 
Beer-Lambert law (MBLL) with partial path length (PPL) 
methodology has been put forth [3]. Furthermore, the 
utilisation of fNIRS in cognitive developmental studies 
has been emphasized, particularly in the investigation of 
mathematical and linguistic abilities [4]. Additionally, 
fNIRS has been employed in brain-computer interface 
(BCI) studies to regulate cognitive functions and control 
neuronal functions in the brain by incorporating fNIRS [2].
Despite these advancements, challenges remain. There 
are still some issues in fNIRS data processing and signal 
quality control. It has been demonstrated that research 
articles utilizing fNIRS exhibit considerable heterogeneity 
in analytical methodologies and preprocessing procedures. 
Additionally, these articles frequently lack comprehensive 
descriptions of the employed methods, which is essential 
for ensuring the replicability and comparability of results 
[5]. Moreover, fNIRS signal processing is not standard-
ized and is significantly influenced by experience and 
manual procedures [6]. Nevertheless, the application of 
deep learning (DL) techniques has demonstrated rapid 
and precise performance in fNIRS studies, outperforming 
traditional machine learning techniques in data processing 
and classification tasks [7].
Parkinson’s disease is the second most prevalent neuro-
degenerative disease after Alzheimer’s disease, affecting 
approximately 1% of the global population. The disease 

is characterized by a combination of movement and 
non-movement disorders. The primary movement disor-
ders associated with Parkinson’s disease includes tremors, 
muscle stiffness, slowed movement, and balance prob-
lems. Non-motor disorders, on the other hand, encompass 
a range of symptoms such as reduced sense of smell, sleep 
disorders, and depression [8].
The precise etiology of Parkinson’s disease remains elu-
sive, although research indicates a potential association 
with oxidative stress and mitochondrial electron transport 
chain (ETC) dysfunction. In patients with Parkinson’s 
disease, dopaminergic neurons in the substantia nigra are 
impaired, which has been linked to defects in the function 
of the mitochondrial ETC complex I. Furthermore, some 
studies have identified reduced ETC complex I activity in 
platelets and brain tissue in patients with Parkinson’s dis-
ease [9].
Given the significant impact of Parkinson’s disease, re-
search efforts have been ramping up. In recent years, 
research on Parkinson’s disease has intensified. For exam-
ple, the video analysis tool SS-180 has been used to assess 
a patient’s gait and turning ability. This has been shown to 
be comparable to laboratory standards and to have good 
reliability and reproducibility [10]. Furthermore, genetic 
studies on Parkinson’s disease are ongoing. For example, 
the discovery of the PARK8 gene has provided new in-
sights into the genetic background of the disease.

2. Application and details of fnIRS 
technology in Parkinson’s diagnosis

2.1 Accuracy and reliability of functional 
near-infrared spectroscopy (fnIRS) in the diag-
nosis of Parkinson‘s disease
Functional near-infrared spectroscopy (fNIRS) is a 
non-invasive and relatively safe neuroimaging technique 
for monitoring brain activity. It is distinguished by low 
cost and portability, which makes it a promising tool for 
diagnosing brain diseases such as Parkinson’s disease 
[11]. However, to assess the accuracy and reliability of 
fNIRS in diagnosing Parkinson’s disease, it is essential to 
consider a number of factors. Firstly, several factors may 
compromise the quality of data obtained from functional 
near-infrared spectroscopy (fNIRS). These include alter-
ations in the optical properties of tissues, contamination 
of biological signals, and modulation of neural activity 
[12]. These factors have the potential to result in a decline 
in data quality, which in turn may affect the reliability of 
the study results. It is therefore essential to employ ap-
propriate methodologies and analytical techniques when 
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conducting fNIRS studies to ensure the robustness of the 
conclusions drawn [12].
In addition to data quality concerns, data processing also 
plays a crucial role. The selection of signal processing 
techniques has a substantial impact on the outcomes of 
fNIRS. Different signal processing techniques may yield 
disparate statistical results. For instance, a processing 
technique that neglects task-induced physiological noise 
in the fNIRS signal may produce implausible results. 
Consequently, it may be more realistic to employ a signal 
processing technique that corrects for physiological con-
founding effects (Fig. 1) [13].
Beyond data quality and processing, another important 
consideration is reliability. The test-retest reliability of 
fNIRS is also a crucial metric for evaluating its accuracy 
and reliability in diagnosing Parkinson’s disease. Previ-

ous studies have demonstrated that fNIRS exhibits high 
test-retest reliability for cortical activity intensity and 
brain network metrics in the resting state [14]. This indi-
cates that fNIRS can serve as a reliable tool for assessing 
the functional brain status of Parkinson’s disease patients. 
While fNIRS shows promise in many aspects, it’s import-
ant to acknowledge its limitations. Despite its advantages, 
fNIRS still has some limitations in comparison to other 
imaging techniques, such as functional magnetic reso-
nance imaging (fMRI). For instance, the spatial resolution 
of fNIRS is typically inferior to that of fMRI, and its 
capacity to penetrate deep brain structures is constrained 
[11]. Moreover, interpreting fNIRS signals requires some 
understanding of how blood flow relates to brain activity, 
a concept known as neurovascular coupling [15].

Fig. 1 (A) Probe array (B) Sensitivity profile [13]

2.2 Resting state and task state in the diagnosis 
of Parkinson‘s disease with fnIRS
Even when people are at rest, the brain is still active. This 
resting state is characterized by spontaneous low-frequen-
cy fluctuations (less than 0.1 Hz) in functional networks, 
reflecting the natural connectivity between different brain 
regions [16]. Resting brain functional connectivity is fre-
quently designated as the “default mode network,” which 
is notably active at rest and is observed in a multitude of 
background activities that are not associated with cogni-
tive function [17][18]. In patients diagnosed with Parkin-
son’s disease (PD), alterations in brain function at rest can 
manifest as early indications of the disease, such as func-
tional deterioration or aberrant patterns of brain activity 

[19].
While resting state provides valuable information, it’s also 
important to study the brain during active tasks. In the 
task state, the brain is required to perform specific cogni-
tive or motor tasks, which can result in increased activity 
in certain regions. For example, during tasks such as the 
Verbal Fluency Test (VFT), significant changes in oxyhe-
moglobin and deoxyhemoglobin levels are observed in the 
brain, which can be captured by functional near-infrared 
spectroscopy (fNIRS) technology [20]. The functional 
connectivity of the brain during task states can provide in-
formation about how the brain responds to external stim-
uli, which is important for assessing cognitive and motor 
dysfunction in patients with Parkinson’s disease (PD) (Fig. 
2).
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Fig. 2 The typical Oxy magnitude spectrum 
curve from a representative individual in 

each of three groups [20]
In the diagnosis and treatment of PD, the application of 
these two states can assist physicians in gaining a more 
comprehensive understanding of a patient’s functional 
brain state. Resting state analysis enables the identifica-
tion of PD-related functional changes, while task state 
analysis facilitates the assessment of the impact of PD on 
a patient’s daily functioning. By comparing the differenc-

es in brain functional connectivity between PD patients 
and healthy controls in the resting and task states, the spe-
cific effects of PD on brain structure and function can be 
more accurately discerned [19][21]. This comprehensive 
approach combining both resting and task states provides 
a more nuanced understanding of PD’s impact on brain 
function.

2.3 Specific applications of fNIRS used in com-
bination with other biomechanical data in Par-
kinson‘s disease
In one study, brain activity was recorded using multiple 
techniques. Functional near-infrared spectroscopy (fNIRS) 
was used alongside electroencephalography (EEG) to 
capture changes in brain waves. Concurrently, an IMU-
based motion capture system and WearUp gloves were 
employed to document both macro- and micro-scale 
body movements [22]. These data were utilized in a Sup-
port Vector Machine (SVM) classifier for classification 
purposes. The results demonstrated that the accuracy of 
distinguishing between PD patients and normal controls 
was markedly enhanced when fNIRS and EEG data were 
utilized in conjunction. This indicates that the integration 
of diverse biomechanical data types can facilitate more 
accurate PD diagnosis.
Another study proposed a new way to analyze fNIRS 
data to better understand how PD affects brain function 
over time. The method constructs dynamic functional 
connectivity through sliding window correlation analy-
sis and applies k-means clustering to generate key brain 
connectivity states. A support vector machine was trained 
to distinguish PD patients from healthy controls by ex-
tracting dynamic state features, including state occurrence 
probability, state transition percentage, and state statistical 
features. The results demonstrated that PD patients exhib-
ited a greater propensity to transition to brain connectivity 
states with higher levels of information transfer compared 
to healthy controls (Fig. 3) [23].

Fig. 3 Three key brain connectivity states, named low-strength, medium-strength, and high-
strength brain connectivity states [23]
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Beyond static measurements, researchers have also ex-
plored how fNIRS can be used to study brain activity 
during movement. For instance, studies have employed 
an fNIRS-based experimental paradigm to capture brain 
activation in PD patients and healthy controls during du-
al-task walking. Three brain states were defined: dilated, 
contracted, and intermediate. Transition factors and corre-
sponding transition features were extracted from temporal 
variations of oxyhemoglobin and deoxyhemoglobin re-
sponses. These features were used to train support vector 
machines to discriminate between PD patients and healthy 
controls. The experimental results demonstrate that this 
method is highly accurate in distinguishing between PD 
patients and healthy controls [19].
It is clear that combining fNIRS with other biomechanical 
data has multiple benefits. This approach not only im-
proves the accuracy of PD diagnosis but also provides in-
sights into how PD affects brain function and body move-
ment patterns. These findings provide novel perspectives 
and tools for the early diagnosis and treatment of PD. As 
research in this area continues to advance, this paper can 
expect even more sophisticated and effective diagnostic 
and treatment strategies to emerge.

2.4 Signal processing for detection or treatment 
of Parkinson‘s disease using fnIRS
When using fNIRS to study Parkinson’s disease, one sig-
nificant challenge is dealing with motion artifacts. These 
are signal disturbances caused by head movement during 
fNIRS data acquisition of Parkinson’s patients. To mini-
mize this interference, several algorithms can be employed 
to identify and correct for motion-related signal changes. 
In one study, researchers compared eight different MAR 
algorithms and tested them while 23 young adult volun-
teers performed a grasping task. The results demonstrated 
that the single-channel MAR algorithm was the most ef-
fective before subsequent BPF and PCA processing [24].
Band-pass filtering is employed to eliminate irrelevant 
frequency components while retaining signals within a 
designated frequency range associated with brain activity. 
In the processing of fNIRS data, it is frequently necessary 
to filter out low-frequency respiratory disturbances (0.1-
0.3 Hz), high-frequency cardiac disturbances (0.8-2.0 Hz), 
and other electronic noise. It has been demonstrated that 
the use of higher-order finite impulse response filters (e.g., 
1000th order) can be an effective means of recovering the 
hemodynamic response from fNIRS data [5].
Beyond filtering, more advanced statistical techniques can 
also be applied to fNIRS data. One such method is Prin-
cipal Component Analysis (PCA), a statistical approach 
for dimensionality reduction and feature extraction. In 

the analysis of fNIRS data, PCA can assist in identifying 
and interpreting major patterns of variability in the data. 
For instance, PCA enables the transformation of raw data 
into a new set of mutually orthogonal variables (principal 
components) that more accurately reflect changes in brain 
activity in Parkinson’s patients. This approach enhances 
the quality of the signal and simplifies the subsequent pro-
cess of data analysis [25].

3. Conclusion
The application of functional near-infrared spectroscopy 
(fNIRS) in the diagnosis of Parkinson’s disease represents 
a promising and evolving field of research. This article ex-
amines the intricacies of fNIRS as a diagnostic tool, em-
phasising the pivotal role of data quality and processing in 
guaranteeing the technique’s precision and dependability. 
The integration of fNIRS with other biomechanical mea-
surements significantly enhances the diagnostic potential, 
offering a more precise understanding of the disease’s im-
pact on brain function. The application of advanced signal 
processing techniques, including motion artifact removal, 
band-pass filtering, and principal component analysis, is 
essential for refining fNIRS signals and enhancing the 
detection of Parkinson’s disease and the development of 
effective treatment strategies. Furthermore, the chapter 
highlights the value of integrating resting state and task 
state assessments in the diagnosis of Parkinson’s disease. 
By examining both states, clinicians and researchers can 
gain a more comprehensive understanding of the brain’s 
functional status, which is crucial for a comprehensive 
and accurate diagnosis of Parkinson’s disease. This com-
prehensive approach not only facilitates the immediate 
diagnostic process but also establishes the foundation for 
future advancements in the field.
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