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Abstract:
Liver cancer, particularly hepatocellular carcinoma (HCC), 
is a leading cause of cancer-related deaths worldwide, 
with a high mortality rate due to its aggressive nature 
and potential for metastasis. This study aimed to identify 
key genes associated with liver cancer using RNA-seq 
data from The Cancer Genome Atlas (TCGA) database. 
Through differential expression analysis, five genes-
GABBR2, KRBA1, SEZ6, LRRC28, and ASB7-were 
identified as significantly associated with liver cancer, 
with GABBR2 and SEZ6 exhibiting the most prominent 
associations. The analysis involved data preprocessing, 
rigorous statistical screening (P value and logFC), and 
comprehensive validation through violin plots, heatmaps, 
and Gene Ontology (GO) enrichment analysis. The results 
highlighted the involvement of these genes in critical 
biological processes, such as signal transduction and 
enzyme regulation, which are pivotal in the pathogenesis 
of liver cancer. The significant enrichment of these genes 
in specific GO terms further supports their potential role 
in liver cancer progression. This study provides valuable 
insights into the genetic basis of liver cancer, offering 
potential biomarkers and therapeutic targets for future 
research and clinical applications.

Keywords: Differential expression analysis; functional 
enrichment analysis; significant association.

1. Introduction
Liver cancer, particularly hepatocellular carcinoma 
(HCC), is one of the most common and deadly can-
cers globally. It directly impairs liver functions, lead-
ing to severe complications such as ascites and hem-
orrhage, with a significant risk of metastasis, causing 
immense suffering for patients. According to the 
global cancer statistics for 2022 released by IRCA on 

April 4, 2024, liver cancer accounts for 7.8% of all 
cancer-related deaths, ranking third worldwide, fol-
lowing lung and colorectal cancer.
Recent research has significantly advanced the un-
derstanding of the genetic mutations and molecular 
mechanisms driving HCC development. Key findings 
include the critical role of P53, a tumor suppressor 
gene, in regulating cell cycle and apoptosis. Studies 
have highlighted the significant expression of P53-re-
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lated genes, such as IL1A and F2R, in various cancers, 
including gastric cancer, suggesting similar roles in liver 
cancer. The differential expression of these genes in tumor 
versus normal tissues indicates their involvement in can-
cer progression and tumorigenesis [1].
Previous studies on the influencing factors of liver can-
cer have predominantly focused on clinical perspectives. 
However, research on the relationship between cancer and 
genes has not specifically targeted liver cancer. This study 
will employ bioinformatics and statistical methods to ana-
lyze gene expression data related to liver cancer, utilizing 
comprehensive resources like the GEO (Gene Expression 
Omnibus) and TCGA (The Cancer Genome Atlas) da-
tabases [2, 3]. These databases provide extensive gene 
expression data from various liver cancer patients, encom-
passing a wide range of genetic mutations and expression 
variations. This wealth of data can provide substantial 
support for this research.
Research on genes associated with liver cancer enables 
the identification of specific genetic mutations and expres-
sions, which is crucial for screening high-risk populations, 
early prevention of cancer, and the development of target-
ed therapies. Such research holds significant scientific and 
clinical importance. Gene-expression profiling, essential 
in understanding cancer biology, could be instrumental 
in identifying unique genetic signatures for HCC, aiding 
in diagnosis and treatment [4]. Integrating global cancer 
statistics, gene expression analysis, and profiling provides 
a comprehensive framework for studying the genetic basis 
of liver cancer [5].
Databases used for gene expression analysis in other can-
cers can also be used to identify critical genetic alterations 
in liver cancer [6]. Prognostic models based on death-as-
sociated genes have been developed to predict patient 
outcomes and guide treatment decisions in HCC, offering 
promising tools for early diagnosis and prognosis, though 
further clinical validation is required [7].
Advanced bioinformatics analysis methods, including 
differential gene expression analysis, gene enrichment 
analysis, and network analysis, have been validated in 
numerous cancer studies. These methods are effective in 
identifying critical genes and signaling pathways associ-
ated with liver cancer. By utilizing these techniques, this 
paper aims to establish predictive models that can further 
validate the reliability of the analysis results.

2. Methods

2.1 Data Source
The data for this study were sourced from the TCGA liver 
cancer RNAseq dataset. Due to the extensive size of the 

raw data, it was organized into a table summarizing the 
differential gene expression between cancer and normal 
samples, facilitating the smooth progression of subsequent 
research.

2.2 Screening of Relevant Genes

2.2.1 Data preprocessing

First, data processing is performed. The code reads RNA-
seq count data from the file, extracts the sample type 
information, and categorizes the samples into cancer and 
normal groups. A grouping factor (cancer vs. normal) is 
then created based on sample type, which is used in sub-
sequent differential expression analysis.
2.2.2 Differential expression analysis

An object containing sample data and grouping infor-
mation is created for differential expression analysis. 
The data are normalized to detect differences in gene 
expression between normal and cancer samples, with the 
identified genes preliminarily considered to be associated 
with liver cancer. The dispersion of the data is estimated 
to account for the biological variability in gene expression 
[8]. Differential expression analysis is conducted using a 
generalized linear model (GLM) to detect significant dif-
ferences in gene expression between the groups (Figure 1).

Fig. 1 Main points of differential expression 
analysis

The screening of genes is primarily based on two criteria: 
the p-value and logFC (log Fold Change). P-value is used 
to assess whether the observed gene expression differ-
ences are statistically significant; a p-value less than 0.05 
typically indicates that the gene’s expression difference 
between the groups is statistically significant, suggesting 
that the expression difference between cancer and normal 
samples are not due to random variation at a 95% confi-
dence level.
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logFC measures the magnitude of gene expression chang-
es between the two groups. An absolute logFC greater 
than 1 usually indicates at least a twofold change in gene 
expression between the groups, filtering out genes that, 
despite statistical significance (low p-value), show mini-
mal expression change. These genes may be biologically 
less important, allowing the focus to shift to genes with 
actual biological significance.
The overall goal of the code is to identify genes with sig-
nificantly different expression levels between cancer and 
normal samples. By applying stringent statistical (p-value) 
and biological (logFC) filters, it is possible to identify 
genes with potential significance in disease research. 
These genes can be further used for biological validation, 
mechanistic studies, or as potential biomarkers [9, 10].

2.3 Verification of Result Accuracy

2.3.1 Violin plot

The violin plot visualizes data distribution and probability 
density by combining elements of boxplots and density 
plots. It aids in understanding the distribution of gene ex-
pression between tumor and normal groups. The symmet-
rical areas represent the density distribution, with wider 
regions indicating higher density. Black dots and vertical 
lines denote the median and interquartile range, while the 
Y-axis reflects gene expression levels. This plot provides 
an intuitive visualization of data distribution, enhancing 
the clarity of expression differences between groups and 
bolstering the credibility of the results.
2.3.2 Heatmap

A heatmap visually represents the expression patterns of 
significant genes across different samples, such as can-
cer and normal groups. By clustering expression data, it 
helps identify consistent expression differences between 
samples. The heatmap clearly shows these differences, 

confirming whether identified genes exhibit consistent 
patterns, such as high or low expression across groups. 
This facilitates a clear visualization of group differences, 
further strengthening the credibility of the results.
2.3.3 Functional enrichment analysis

Functional enrichment analysis evaluates whether differ-
entially expressed genes have biological significance by 
assessing their enrichment in specific biological processes, 
molecular functions, or pathways. This analysis typically 
employs GO or KEGG pathway analysis to determine if 
the identified genes are enriched in relevant biological 
processes or pathways [9,10]. When genes are enriched 
in key biological pathways, it confirms the biological rel-
evance of the analysis, underscoring their importance in 
disease progression. This method, when combined with 
boxplots and heatmaps, provides multi-level validation of 
the results, ensuring both statistical and biological accura-
cy.

3. Results and Discussion
Through step-by-step data screening, analysis, and verifi-
cation, five genes associated with liver cancer were iden-
tified: GABBR2, KRBA1, SEZ6, LRRC28, and ASB7. 
Among them, GABBR2 and SEZ6 show the most signifi-
cant association with liver cancer.

3.1 Analysis of Relevant Genes
The primary objective of this experiment, conducted 
through R code, is to identify genes with significantly dif-
ferential expression between cancer and normal samples. 
Through stringent statistical screening (p-value) and bio-
logical screening (logFC), five genes associated with liver 
cancer were identified. The following table 1 presents the 
relevant genes that meet the specified criteria.

Table 1. Relevant genes

gene logFC p-value
GABBR2 2.466 0.006
KRBA1 2.242 0.015
SEZ6 3.627 0.019

LRRC28 2.173 0.042
ASB7 2.008 0.047

Based on the results, all five genes identified in the study 
are significantly associated with liver cancer. The study of 
these genes may provide novel targets for the early diag-
nosis and treatment of liver cancer in the future, offering 
hope for improved patient prognosis.

3.2 Accuracy Verification

3.2.1 Analysis of violin plot results

The violin plot reveals that gene expression significantly 
differs between the tumor and normal groups, with higher 
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expression values observed in the tumor group and lower 
values in the normal group. These results are statistically 
significant. The distinct difference in expression patterns 
strongly supports the role of these genes in the disease 

mechanism. LIHC refers to Liver Hepatocellular Carcino-
ma, where T represents the number of tumor samples, and 
N represents the number of normal samples.

Fig. 2 GABBR2 and KRBA1

Fig. 3 SEZ6 and LRRC28
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Fig. 4 ASB7
In the figure 2, 3 and 4, T represents the number of tumor 
samples, N represents the number of normal samples, red 

represents the tumor group, and blue represents the normal 
group. It can be seen that the expression of all screened 
genes in the tumor group is significantly higher than that 
in the normal group. This means that the expression level 
of this gene is higher in tumors, and this difference is sta-
tistically significant.
3.2.2 Analysis of heatmap results

The dendrograms at the top and left of the heatmap rep-
resent the hierarchical clustering of samples and genes. 
These dendrograms help identify the similarities and dif-
ferences among samples and genes. The color gradient in 
the heatmap indicates the variation in gene expression lev-
els. Each column corresponds to a different sample label, 
and each row represents a significantly differentially ex-
pressed gene. By analyzing the color gradient, the patterns 
of gene expression can be identified, and these distinct 
expression patterns support the significant differential 
expression of these genes under different phenotypes or 
conditions (Figure 5).

Fig. 5 Heatmap of different expressed genes
Through the analysis of the heatmap, if the samples are 
clearly clustered together according to their groups (tumor 
and normal) in the dendrogram, it indicates that these sig-
nificantly differentially expressed genes exhibit consistent 
expression patterns across different sample groups. This 
consistency suggests that the expression of significant 
genes within cancer and normal samples is similar among 
individuals within each group, ruling out the possibility of 

coincidental findings, thereby further validating the reli-
ability of the identified genes.
3.2.3 Analysis of enrichment results

Through Gene Ontology (GO) enrichment analysis, it is 
possible to understand the enrichment of significantly dif-
ferentially expressed genes in specific biological processes 
(table 2, 3).
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Table 2. Gene Ontology (GO) enrichment results

gene q-value p-value p.adjust
GABBR2 0.009 0.004 0.035
GABBR2 0.009 0.004 0.035
GABBR2 0.009 0.005 0.035
SEZ6 0.009 0.005 0.035
SEZ6 0.009 0.007 0.035
GABBR2 0.009 0.008 0.035

Table 3. Description of geneID

gene Description
GABBR2 negative regulation of adenylate cyclase activity
GABBR2 negative regulation of cyclase activity
GABBR2 negative regulation of lyase activity
SEZ6 regulation of protein kinase C signaling
SEZ6 cerebellar Purkinje cell layer development
GABBR2 gamma-aminobutyric acid signaling pathway

These analysis results demonstrate the involvement of the 
identified significant genes (GABBR2 and SEZ6) in mul-
tiple key biological processes. Furthermore, these findings 

have undergone rigorous statistical correction, thereby 
ensuring a high level of credibility.

Fig. 6 GO enrichment analysis plot
The GO enrichment analysis plot was obtained, with the 
X-axis displaying the count ratio of significantly differen-
tially expressed genes for each GO term, and the Y-axis 
listing the significantly enriched GO terms. Each term de-
scribes a specific biological process. The color represents 

the adjusted p-value (p.adjust), with a gradient from red 
to blue indicating lower to higher adjusted p-values. The 
length of the bars reflects the proportion of genes within 
each GO term relative to the entire gene set in the enrich-
ment analysis.
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The red portion in the color bar indicates that these terms 
are statistically highly significant (with a lower p.adjust), 
meaning that these biological processes are highly en-
riched in the gene set. This suggests a significant associa-
tion of GABBR2 and SEZ6 with liver cancer (Figure 6).

4. Conclusion
This study analyzed RNA-seq data from the TCGA liver 
cancer dataset to identify genes significantly associated 
with liver cancer. The research process involved sever-
al key steps: data preprocessing, differential expression 
analysis, and validation of result accuracy using multiple 
methods. Five genes-GABBR2, KRBA1, SEZ6, LRRC28, 
and ASB7-were found to be associated with liver cancer, 
with GABBR2 and SEZ6 showing the most significant 
association.
By combining differential expression analysis with rig-
orous statistical and biological validation methods, this 
study provides a comprehensive approach to identifying 
liver cancer-related genes. The identified genes offer po-
tential insights for further research into the mechanisms of 
liver cancer and may serve as biomarkers or therapeutic 
targets for future clinical studies.
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