
ISSN 2959-6157

Dean&Francis

1592

Abstract:
Brain-computer interface technology (BCIs) has established 
a potential pathway for direct two-way communication 
between humans and computers. In recent years, with 
the help of Artificial Intelligence (AI) in advancing the 
analysis of neural activity and the decoding of brain 
signals, the combination of AI and BCI applications is 
becoming a hot direction. The objective of this paper is to 
offer a comprehensive overview of the implementations 
of the combination integrating AI and BCIs. In recent 
years, AI has garnered significant attention across five key 
application areas, including communication, psychological 
state estimation, motor imagery (MI), calibration, and 
interference suppression. Therefore, this paper will review 
the current state of BCI technology, analyze the hot fields 
of AI and BCI combined applications, and finally make a 
forecast for future trends. Despite the current shortcomings, 
the combination of AI and BCIs remains promising, 
foretelling a broad future in the decoding and analysis of 
brain signals.

Keywords: Artificial intelligence; brain-computer inter-
faces; language decoding.

1. Introduction
BCIs are advanced technologies that connect the 
brain with computers, allowing for directly two-way 
communication between them [1,2]. By measuring 
brain activity signals and transmitting them to com-
puters for analysis, this technology enables monitor-
ing, communication, or control of the user’s state [1]. 
In the medical field, BCIs have brought revolutionary 
changes to severely disabled patients, offering a new 
means of communication, especially for those who 
have lost muscle function due to neurodegenerative 
diseases or brain injuries.
Research on BCIs not only aids in disease diagno-

sis, such as identifying sleep disorders or predicting 
epileptic seizures by detecting brain abnormalities 
[3], but also plays a significant role in rehabilitation 
therapy, helping patients recover mobility, reduce the 
impact of injuries, or assist them in daily activities. 
Beyond medical applications, BCIs also show great 
potential in non-medical fields, including neuroergo-
nomics [4], smart environments, neuromarketing, ad-
vertising, and the fields of gaming and entertainment.
Despite these advances, the development of BCIs 
still faces many challenges. How to improve the 
efficiency of information transmission [5] and how 
to accurately identify personal intentions from the 

Implementation of Artificial Intelligence on 
Brain-Computer Interface: Review

Lu Liu1,*

1School of Sino-European 
Technology, Shanghai University, 
Shanghai, China

*Corresponding author: liulu@shu.
edu.cn

1



Dean&Francis

1593

LU LIU

brain’s background electrical activity [6] are just a few 
of the tough questions. But the latest advancements in AI 
offer hope for solving these problems. AI has surpassed 
humans in decoding and encoding neural signals, making 
it an ideal assistant for processing brain signals. They sim-
ulate intelligent behavior through computer simulations, 
and their performance in specific tasks can even surpass 
that of humans [7]. In BCIs, AI algorithms continuously 
receive internal parameters, recognize useful information 
in data, and produce the desired functional outcomes. 
Although most of these studies are still in the preclinical 
stage, continued progress may make the clinical applica-
tion of BCIs more feasible.
In the new era of technological transformation, the combi-
nation of BCIs and AI has attracted widespread attention. 
This paper will review the current applications of BCIs, 
focusing on the status of BCIs, the role of AI in BCIs, and 
the future direction of AI-based BCIs. The paper  conduct-
ed a thorough review of research on multimodal brain lan-
guage decoding. This included studies that involved texts, 
speeches, images, and videos. The analysis was from the 
viewpoint of AI methods.

2. The Development and Current Sta-
tus of Brain-Computer Interfaces
Looking back at the history of BCIs, their development 
can be roughly divided into three stages, which can be 
seen in figure 1: interface, interaction, and intelligence [8].
During the first stage, BCI systems primarily assisted in-
dividuals with disabilities in communication and control, 
converting intentions into actions such as characters on a 
screen or cursor movement through a direct brain-comput-
er interface. These systems were categorized into active 
and passive types [9]. Active BCIs required conscious 
user participation, while passive BCIs monitored the us-

er’s cognitive state. Brain signal acquisition was achieved 
through electrophysiological signals (such as EEG and 
MEG) and metabolic signals (such as fMRI), which were 
decoded through preprocessing, feature extraction, and 
pattern classification. In recent years, AI techniques have 
been widely applied in this field[10,11].
The second stage introduced closed-loop BCI systems that 
not only controlled devices but also facilitated the resto-
ration of human functions, creating a closed-loop feedback 
control circuit that includes the brain [12]. In the control 
of neural prosthetics, these systems could convert brain 
activity into control signals and provide sensory feedback 
to the brain through electrical stimulation. The closed-
loop design allowed for two-way interaction between the 
neural prosthetic and the brain, enabling the exchange of 
movement and sensation. The core of the system lies in 
neuromodulation techniques, the construction of closed-
loop systems, and the mutual adaptation between the brain 
and the system[8].
The third stage, which is where BCI technology currently 
stands, has seen the rapid development of AI technology 
promoting the integration of biological intelligence and 
AI, resulting in brain-computer intelligent systems These 
systems are used in the medical field for rehabilitation 
therapy [13] and in non-medical fields to enhance human 
cognition, information processing, and decision-making 
capabilities[14-17]. BCI technology utilizes high-order 
cognitive brain signals to achieve a synergistic effect 
between human intelligence and AI by extracting human 
cognitive information and integrating it into AI systems to 
improve AI performance. This hybrid intelligent system 
combines human cognitive abilities with the operational 
speed and storage capacity of computers to jointly accom-
plish complex tasks. The mutual adaptation between the 
brain and the computer is key to BCI technology, involv-
ing mutual learning and behavioral adjustments between 
humans and AI systems.
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Figure 1 An evolutionary model for generalized BCI technology [8]

3. The Application of AI in the Field of 
BCIs

3.1 The Application of AI-Based Multimodal 
Brain Language Decoding
Brain language decoding techniques have the capability 
to convert neurological reactions to external prompts into 
written text or spoken language. This technology is of 
great significance for the development of brain-computer 
interfaces and for assisting patients with communication 
disabilities [18].
The process generally involves three steps: first, extract-
ing semantic or acoustic features from text, speech, imag-

es, or video; second, training a decoder to understand the 
relationship between brain signals and these features; and 
finally, using this decoder to predict the semantic infor-
mation of brain activity. Although the decoding process 
varies in different contexts, there are differences in the 
level of detail of decoding, the AI techniques applied, the 
way semantic features are extracted, and the potential for 
decoding accuracy.
3.1.1 Text Modality

In the text modality, brain language decoding involves 
transforming the brain’s activity generated when viewing 
text into semantic categories or textual descriptions. This 
process consists of several steps: initially, recording the 
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brain’s response to textual stimuli, followed by classifying 
these stimuli or extracting their semantic features, and fi-
nally, training a decoder to predict new brain activities.
Semantic classification is the primary focus of research, 
which includes the decoding of words and sentences. In 
their 2012 research, Buchweitz and colleagues observed 
that bilingual individuals exhibited similar brain activity 
patterns when processing both their native and second lan-
guages, a finding that was linked to the degree of language 
proficiency. Utilizing a Gaussian Naive Bayes decoder, 
they trained a model that accurately foresaw brain activity 
in bilinguals as they read words in English and Portu-
guese, thereby highlighting the feasibility of cross-linguis-
tic decoding [19].
Subsequently, in 2019, Sheikh and colleagues investigat-
ed the neural mechanisms underlying the processing of 
noun semantics across varying levels of consciousness. 
Their analysis employed a supervised Support Vector Ma-
chine (SVM) model. The findings indicated that specific 
brain regions demonstrated an unexpectedly high level 
of accuracy in decoding the native language even during 
semi-conscious or unconscious states. Nevertheless, the 
accuracy of cross-language decoding was not significantly 
above chance levels, implying that proficient semantic de-
coding across languages necessitates conscious awareness 
in addition to an in-depth understanding of semantics [20].
The first attempt at sentence-level decoding was made in 
the research by Yang et al. (2017), who tried to decode 
sentences in English, Portuguese, and Mandarin. They 
discovered that decoders trained with data from two lan-
guages were more effective than those trained with data 
from a single language [21]. After them, Pereira et al. 
(2018) proposed a universal decoder based on fMRI data, 
capable of decoding words and sentences across a broad 
semantic space, marking the first extension of decoders 
from the word level to the sentence level [22].
3.1.2 Speech Modality

Individuals afflicted with speech motor disorders could 
potentially reap benefits from an innovative technology 
capable of translating neural signals into audible speech. 
This cutting-edge technology is predicated on the princi-
ples of brain language decoding, necessitating the scrutiny 
of the brain’s reactions to auditory prompts. The objective 
is to cultivate a decoder that can discern the link between 
neural activity and the semantic or acoustic attributes. 
Studies have been conducted across various linguistic 
tiers, encompassing words, sentences, and phonemes.
In the realm of word-level analysis, Correia and associates 
in their 2014 investigation discovered that an SVM-mod-
el-based decoder was competent in semantic decoding. 
Remarkably, this capability extended to facilitating trans-

lations across distinct languages. Subsequent research in 
2015 by the same team confirmed that this decoder could 
interpret EEG signals evoked by specific words with a 
precision that surpassed random probabilities [23].
Advancing to the phrase level, studies like those conduct-
ed by Dash et al. in 2020 have illustrated the practicality 
of deconstructing phrases using ECoG signals and neural 
network models. Notably, the highest levels of accuracy 
in decoding were observed during the phrase production 
phase [24]. Shifting focus to sentence-level decoding, 
Makin et al. in 2020 deployed an RNN framework to 
translate ECoG signals into English sentences, achieving 
a commendably low margin of error [25].
Lastly, at the phoneme level, Ramsey et al. in 2018 con-
ducted a study that underscored the importance of tem-
poral information in decoding phonemes through ECoG 
signals [26]. This finding underscores the intricate rela-
tionship between timing and the decoding of linguistic 
sounds.
3.1.3 Image Modality

Typically, people primarily gather information from the 
external environment through their sense of sight. With 
the continuous advancement of machine vision and natu-
ral language processing technologies, an increasing num-
ber of researchers are attempting to decode brain activity 
induced by visual images into textual descriptions. Image 
modality language decoding refers to the process of trans-
forming brain signals when viewing natural images into 
text descriptions. This includes training a decoder to map 
image features to brain activity features and generate sen-
tences from brain activity. In 2016, Matsuo and colleagues 
made the first attempt to convert brain activity into natural 
language. Although the initial accuracy was not high, it 
was a breakthrough in the field. They used VGGNet and 
LSTM to build an encoder-decoder network and generated 
movie subtitles under the Chainer framework [27]. Subse-
quent studies found that a ridge regression model without 
an attention mechanism performed better in decoding, and 
a three-layer neural network was superior in generating 
high-quality sentences.
By 2020, Takada et al. proposed an innovative approach, 
arguing that directly generating image features and text 
features from fMRI data might result in information loss. 
So they used the fMRI dataset from Horikawa and Kami-
tani, constructing a model that directly mapped fMRI data 
to text features [28], using unmarked images to improve 
decoding accuracy.
In 2021, Huang et al. proposed the PT-LDM model, which 
decodes the brain’s response to images through three 
parts: an image encoder, an fMRI encoder, and a language 
decoder. They trained the model using a progressive 
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transfer strategy to enhance decoding accuracy. In the 
same year, they also proposed the DC-LDM model, which 
introduced the multi-head attention mechanism of the 
Transformer architecture to improve performance [29].
Furthermore, studies by Branco et al. and Wang et al. 
showed that the brain’s response to sign language and 
handwritten digits could also be decoded [30], indicating 
that brain language decoding in the image modality is not 
limited to natural images.
3.1.4 Video Modality

The field of BCIs has seen significant advancements with 
the development of video modality brain language de-
coding technology. This technology aims to translate the 
brain’s response to video content into written text, thereby 
describing the video’s narrative. The process typically in-
volves analyzing the video, breaking it down into distinct 
scenes, and identifying objects within those scenes. These 
objects are then labeled with semantic tags or converted 
into word vectors. Researchers train decoders to find cor-
relations between brain signals and this semantic informa-
tion.
In 2015, Hu and colleagues recorded fMRI signals from 
participants while they watched videos and used the 
SMLR algorithm to train a decoder, establishing a cor-
relation between brain activity and semantic tags [31]. In 
2016, Huth et al. adopted a more nuanced approach, using 
WordNet to tag objects and actions in movie scenes and 
an HLR model to train the decoder, successfully decoding 
categories of various objects and actions [32].
By 2018, Nishida and Nishimoto employed a more de-
tailed word vector representation to decode brain activ-
ity [33]. They recorded fMRI signals from participants 
watching commercials and used a large Japanese corpus 
to train the word vector model. A regularized regression 
model allowed them to learn how to link brain signals 
with scene vectors.

3.2 The Application of AI in BCI Systems

3.2.1 BCI Calibration

Calibrating a BCI is crucial for ensuring that the device 
operates effectively for a specific user. During training, 
users must perform tasks to generate data that will be used 
for predictions during testing. However, calibration is not 
only time-consuming but also involves storing a large 
amount of information for each user [34]. For patients 
with ALS or brainstem stroke, this lengthy calibration 
process can be quite challenging. Consequently, research-
ers are exploring the use of AI to expedite the calibration 
process and seek to eliminate the need for personalized 
calibration. The subsequent list outlines various effective 

strategies and efforts implemented by researchers:
Convolutional neural networks (CNNs) are adept at auto-
matically identifying and extracting features from brain 
signals.
Transfer learning (TL) reduces the time and resource con-
sumption required for training new models by leveraging 
pre-trained models.
Linear discriminant analysis (LDA), a classifier used in 
supervised learning, excels in situations where features 
can distinctly separate classes.
Gaussian process regression (GPR) is a powerful tech-
nique that provides effective solutions even with a limited 
amount of data.
Hierarchical clustering analysis (HCA) is an unsupervised 
learning technique that groups data by assessing similari-
ties between data points.
3.2.2 noise Suppression

Obtaining valuable data from brain signals requires 
high-quality signals free from interference. EEG signals, 
due to their low amplitude, are frequently disturbed by 
noise, and their low signal-to-noise ratio makes noise re-
duction a challenge [35]. To address this issue, researchers 
have employed a variety of AI algorithms.
Artificial neural networks (ANNs) can recognize and 
adapt to changes in brain signals, aiding in the automat-
ic removal of interferences not related to EEG. In 2017, 
Radüntz et al. introduced an automated algorithm that 
combines Artificial Neural Networks (ANNs) with Inde-
pendent Component Analysis (ICA) to remove artifacts 
from EEG recordings [36]. The algorithm first uses ICA 
to generate topographic maps and power spectra, then 
proceeds to remove the artifacts and reconstruct the EEG 
signals. Upon testing, it achieved an accuracy rate of 
95.84%. This method is not restricted to specific types of 
EEG artifacts, but it requires a large amount of data for 
training, optimal network parameter selection, and is rela-
tively time-intensive.
The K-nearest neighbors (KNN) is also a supervised 
learning technique used for classifying EEG signal inter-
ferences. The K-means clustering technique reduces EOG 
interference by assigning signals to the nearest centroid.
3.2.3 Communication Assistance in BCI Systems

BCI systems play a crucial role in assisting individuals 
with disabilities to communicate, particularly those who 
have lost muscle function due to ALS, stroke, or spinal 
cord injuries. These systems interpret brain signals for 
communication without the need for muscle movements 
[37]. In BCI communication applications, AI is primarily 
used for character recognition, which typically involves 
two main approaches: Event-Related Potentials (ERPs) 
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and Steady-State Visually Evoked Potentials (SSVEPs).
Researchers employ various techniques to enhance the 
effectiveness of BCI systems, including CNNs, Long 
Short-Term Memory networks (LSTMs), Support Vector 
Machines (SVMs), Random Forests (RFs), and fuzzy 
logic [35]. These technologies help improve the accuracy 
of text recognition, refine cursor control, and optimize the 
user experience for error correction during communica-
tion.
3.2.4 Assessment of Psychological States in BCI Sys-
tems

Passive BCI systems apply to the field of psychological 
state estimation by sensing spontaneous brain activity 
of participants without any special stimulation. They are 
used to optimize work environments and performance, 
such as classifying mental workload, detecting stress lev-
els, and estimating memory load. These systems are also 
employed for the early detection of driver fatigue to pre-
vent accidents and for estimating emotions and levels of 
consciousness in patients with disorders of consciousness 
(DOC) [35]. BCI systems are further utilized to assess 
cognitive states, such as wakefulness and sleep [38].
In the realm of psychological state estimation, AI algo-
rithms play a pivotal role, analyzing brain signals to iden-
tify and predict an individual’s psychological conditions. 
For instance, ANNs, with their five hidden layers and 
backpropagation algorithm, improve work environments 
with an accuracy rate of 72.57% [39]. However, accuracy 
may decline if there is a long interval between training 
and testing phases.
Multilayer perceptrons (MLPs), a type of ANN, use their 
multi-layered structure to assess emotional states. An MLP 
with three hidden layers performs optimally in these tasks, 
achieving an accuracy rate of up to 85.00%, although this 
requires a substantial amount of data for training. CNNs 
have also shown effectiveness in evaluating emotions and 
workload. Nevertheless, they necessitate extensive train-
ing and perform better after personalized calibration. Prin-
cipal Component Analysis (PCA), when combined with 
Autoencoders (AEs), is utilized for inferring emotions 
derived from EEG signals, but with an accuracy rate of 
only 52.74%. As the number of nodes in the hidden layers 
of AEs increases, so does the computational time. SVMs 
are used to identify emotions in DOC patients, with an 
accuracy rate of 91.50% for healthy subjects and 58.50% 
for DOC patients. Logistic regression (LR), a fundamental 
supervised learning algorithm, is employed to differenti-
ate between wakeful and sleep states in epilepsy patients, 
particularly effective when analyzing high gamma band 
signals [35].
3.2.5 BCI Systems Based on Motor Imagery

BCI systems leverage motor imagery to classify brain sig-
nals, marking a significant application area for AI. Users 
generate brain signals by imagining physical movements 
without any external stimuli, thus achieving motion con-
trol. These systems can identify various limb movements 
or types of motion, such as hand flexion, extension, or 
grasping, demonstrating potential applications in con-
trolling robotic arms, lower limbs or exoskeletons for 
hands, wheelchairs, and vehicles.
To enhance the classification accuracy and efficiency of 
BCI systems, researchers have employed a variety of al-
gorithms. Artificial neural networks (ANNs) perform well 
in distinguishing between imagined movements of the left 
and right hands [40], optimizing feature selection through 
genetic algorithms, simplifying the system, and improving 
classification accuracy. Deep belief networks (DBNs) en-
hance training efficiency by combining multiple unsuper-
vised ANNs.
Multilayer perceptrons (MLPs) have also shown effec-
tiveness in classifying functional MRI (fMRI) signals for 
robotic arm control, although further improvements are 
needed for real-time operation [41].
CNNs have proven effective in classifying motor imagery 
of hands, feet, or the tongue. Capsule networks (CapsNets) 
further enhance the performance of CNNs by establishing 
hierarchical relationships [42].
Fuzzy logic through the neural fuzzy classifier of the 
self-organizing map theory (ART) effectively handles the 
non-stationarity of EEG signals and classifies multiple 
types of motor imagery tasks [43]. Although this method 
requires appropriate parameter adjustment to optimize 
performance, it provides a solid foundation for the practi-
cal application of BCI systems. The development of these 
algorithms and technologies supports the practical efficacy 
and usability of BCI systems in real-world applications.

4. Conclusion
The integration of AI with BCIs holds substantial promise 
for the decoding and analysis of brain signals. As AI con-
tinues to advance, its application in the realm of BCIs has 
shown tremendous potential, particularly in decoding and 
processing brain signals. In recent years, AI has garnered 
significant attention across five key application areas: 
communication, psychological state estimation, motor im-
agery (MI), calibration, and interference suppression.
In the field of calibration, researchers are striving to de-
velop BCI systems that are either quick to calibrate or 
calibration-free, aiming to reduce the time required for 
this process. When it comes to interference suppression, 
especially with EEG signals, the focus of research is on 
how to minimize interference caused by broad-spectrum 
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artifacts that typically have low amplitudes. Furthermore, 
the continued development of deep learning models is ex-
pected to enhance the accuracy of brain language decod-
ing, and the paradigm of combining audio-visual stimuli 
may represent a new direction for future research.
Despite the current challenges associated with the inte-
gration of AI and BCIs—such as limited sample sizes and 
insufficient generalization capabilities leading to subop-
timal decoding outcomes, and a notable decrease in algo-
rithmic accuracy in disabled patients compared to healthy 
subjects—further improvements are necessary. Howev-
er, these challenges also signal opportunities for future 
development. To improve classification accuracy, it is 
possible to select the optimal channels through AI-based 
algorithms or to design hybrid BCI systems that integrate 
two measurement techniques. Additionally, exploring the 
potential for parallel processing to reduce computational 
costs and enable real-time application of these technolo-
gies is an important direction for future research.
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