
ISSN 2959-6157

Dean&Francis

1733

Abstract:
This study proposes a distributed inference method based
on the ResNet50 model, aiming to improve inference
efficiency and resource utilization by dividing the model
into multiple sub-models. Specifically, the model is divided
into the initial convolutional layer, four stages of residual
blocks, and the subsequent global average pooling and fully
connected layers. Each sub-model independently handles
specific tasks, allowing for parallel execution on different
computing devices, thereby accelerating the overall
inference process. This partitioning strategy effectively
addresses high-concurrency requests, enhancing the
system‘s response speed. Additionally, it enables dynamic
scaling of resources based on workload demands, which
is crucial for real-time applications. The implementation
of distributed inference also makes the model more
flexible, adapting to various computing resources and
application scenarios. Experimental results indicate that
this method significantly enhances inference efficiency
while maintaining model performance, providing new
ideas and solutions for the practical application of deep
learning models. These findings underscore the potential
of distributed architectures in advancing the deployment of
complex neural networks across diverse environments.

Keywords: Serverless; ResNet50; Model Partitioning;
Parallel Execution; Inference Efficiency.

1. Introduction
In modern deep learning applications, inference ef-
ficiency and resource utilization are crucial factors
for achieving high-performance systems. In recent
years, researchers worldwide have made significant
progress in optimizing machine learning inference ef-

ficiency on serverless computing platforms. In 2019,
Zhang Chengliang and colleagues proposed a meth-
od that utilizes cloud computing services to achieve
low-cost, high-benefit machine learning inference
services that meet service quality requirements [1].
This research employed model compression and
dynamic resource scheduling strategies to enhance

The Study of Machine Learning Inference
Tasks Based on Serverless Computing
Platforms

Chang Liu1, *

1Department of Information
Technology, Chang’an University,
Shaanxi, China

*Corresponding author:
iliylv16233@gmail.com

1

Dean&Francis

1734

ISSN 2959-6157

service quality while ensuring cost-effectiveness, optimiz-
ing the performance of enterprise-level inference services.
Similarly, Bhattacharjee et al. presented an efficient and
scalable serverless system for deep learning prediction
tasks in a 2020 paper [2]. This study explored effective
resource allocation and scheduling management, as well
as optimizing the inference efficiency of deep learning
models. On the cloud service platform front, Alibaba
Cloud’s Model Service offers comprehensive support,
enabling developers to quickly deploy trained models as
service endpoints via its API and SDK, while utilizing
traffic distribution strategies for automatic scaling [3].
Google Cloud Functions, on the other hand, allows users
to run code without managing infrastructure, providing
high flexibility for machine learning applications based on
serverless computing platforms [4].
Existing research has focused on improving the efficiency
of public cloud applications, such as achieving smarter
resource utilization in serverless environments and explor-
ing technologies like dynamic task scheduling and pre-
dictive model optimization to reduce latency and enhance
system efficiency [5]. Additionally, researchers have made
discussions about how to support various deep learn-
ing frameworks and tools to meet the needs of different
models [6]. These experimental results provide valuable
theoretical foundations and practical experience for future
research, as well as guidance for future directions.
This paper focuses on the increasing demand for intel-
ligent applications and identifies that traditional sin-
gle-model inference methods struggle to handle the chal-
lenges of high concurrent requests. To address this issue,
the study proposes a distributed inference method based
on the ResNet50 model. This approach leverages model

partitioning for parallel processing, thereby accelerating
the inference process and enhancing system response
speed [7]. Each sub-model focuses on specific tasks and
can flexibly adapt to different computing devices and re-
source configurations. This distributed inference strategy
not only effectively improves inference efficiency but also
provides new ideas and solutions for the practical appli-
cation of deep learning models. Experimental results val-
idate that this method enhances inference efficiency while
maintaining model performance, laying a foundation for
future research and applications.

2. Algorithm Design

2.1 Overview
In the process of optimizing the inference performance of
deep learning models on serverless computing platforms,
the key lies in improving the consumption of compu-
tational resources and time. In traditional single-node
inference methods, large models often face issues such
as excessive inference latency and limited computational
resources, resulting in low actual inference performance
[8]. To address this problem, this paper proposes a method
of model partitioning and distributed inference based on
the large deep learning model ResNet50. By dividing the
model into multiple sub-models and deploying them in
different serverless functions, the method aims to paral-
lelize inference tasks, thereby optimizing inference per-
formance.

2.2 Model Partition Strategy

2.2.1 Details of Resnet50

2

Dean&Francis

1735

CHAng LIU

Fig. 1 Structure of Resnet50
ResNet50 is a deep residual network [9], as illustrated in
Fig. 1. The diagram illustrates a typical ResNet50 model
architecture. The model consists of five main stages (Stage
0 to Stage 4), each containing a series of convolutional
layers and residual blocks. First, the input image size is
(3,224,224). After the initial CONV layer (7x7 convo-
lution and 3x3 max pooling), the output size becomes
(64,56,56). This is Stage 0. Then, the model enters Stage
1, which contains a single BTKW1 residual block. BTKW
stands for “Bottleneck Transformation with Kernel
Weights”, which is a type of residual transformation with
a bottleneck structure. The input and output sizes of this
block are (64,56,56) and (256,56,56), respectively. Next
is Stage 2, which includes three parallel BTKW2 residual
blocks. Each BTKW2 block has an input and output size
of (512,28,28). These parallel residual blocks can enhance
the model’s representational capacity. Afterward, there are
Stage 3 and Stage 4, containing 4 and 6 parallel BTKW
residual blocks, respectively. The input and output sizes of

these blocks continue to evolve, reflecting the transforma-
tion of feature maps. The overall model structure utilizes
residual connections (dashed arrows) to enhance gradient
flow, increasing the model’s depth and performance. The
numbers in parentheses indicate the channel, height, and
width dimensions of each layer. This residual block-based
deep learning model architecture is highly powerful and
has demonstrated excellent performance in various com-
puter vision tasks. This design also allows each block to
be processed independently of the others. As a result, the
modular nature of the residual structure enables them to
be partitioned and combined effectively.
2.2.2 Partition Concept

The ResNet50 model consists of five stages, allowing the
model to be partitioned into five sub-models by stage. The
principles that should be followed when partitioning are:
1. Balanced Computational Load: Ensure that the com-
putational workload of each sub-model is as balanced as
possible to prevent any single sub-model from becoming

3

Dean&Francis

1736

ISSN 2959-6157

a bottleneck.
2. Minimize Data Transfer: The intermediate results
passed between sub-models should be kept as small as
possible to reduce network transmission latency.
2.2.3 Partition Scheme

Based on the hierarchical structure of ResNet50, it can be
partitioned into the following five sub-models:
1. Initial Convolutional Layer Sub-model
a) Composition: Input Layer, Initial Convolutional Layer,
Batch Normalization Layer, ReLU Activation Layer, Max
Pooling Layer.
b) Function: Extract initial features from the image.
2. First Stage Residual Block Sub-model
a) Composition: The two residual blocks of the first stage,
layer1.
b) Function: Extract deeper features to construct more
complex representations.
3. Second Stage Residual Block Sub-model
a) Composition: The two residual blocks of the second
stage, layer2.
b) Function: Further enhance features.
4. Third Stage Residual Block Sub-model
a) Composition: The two residual blocks of the third
stage, layer3.
b) Function: Extract high-level features.
5. Fourth Stage Residual Block and Subsequent Layers
Sub-model
a) Composition: The two residual blocks of the fourth
stage, layer4, global average pooling layer, and fully con-
nected layer.
b) Function: Complete the final feature aggregation and
classification task.

2.3 Distributed Inference Strategy

2.3.1 Preliminary Scheme

Fig. 2 Distributed Reasoning Process
According to the model partitioning scheme mentioned
earlier, the sub-model deployment can be initially de-
signed as a pipeline scheme, where the output of each
sub-model directly serves as the input for the next. As
shown in Fig. 2, a trigger first calls Function 1 locally and
passes image data to it. Function 1 then triggers Function
2, passing the inference results from Function 1, and so
on, until Function 5 returns the classification results to the
local environment. Each sub-model only needs to focus
on how to receive and process data from the previous
sub-model, without the need to communicate with other
sub-models. This maximizes the potential for parallel pro-
cessing while reducing complex dependencies.
This pipelined deployment can improve the overall infer-
ence efficiency, as the individual sub-models can execute
in parallel, thereby reducing the total time for the final
classification result to be returned to the local environ-
ment. In contrast, if a global model deployment is adopt-
ed, each inference task would require loading the entire
model, which may result in low resource utilization and
longer inference times. The pipeline scheme, by breaking
down the large model into smaller sub-models, effectively
reduces the resource requirements for individual func-
tions, and leverages the parallelism between functions to
optimize the overall performance.
2.3.2 Advanced Scheme

4

Dean&Francis

1737

CHAng LIU

Fig. 3 Distributed Reasoning Process
The structure of ResNet50 has certain serial dependencies;
however, the residual blocks within each stage possess
high parallel potential, especially since the computations
within each residual block are independent. Therefore,
these residual blocks can be distributed across different
functions for processing. Additionally, for more complex
convolution operations, further parallelization can be
achieved at the layer level. The structure of this scheme
is illustrated in Fig. 3, with the specific parallel steps out-
lined as follows:
1. Stage 1 (Initial Convolution Layer and Pooling Layer):
Since Stage 1 is relatively simple, it can be processed

directly within a single cloud function. The input data is
preprocessed to generate initial feature maps, which serve
as input for Stage 2.
2. Stages 2-5 (Multiple Residual Blocks):
a) Residual Blocks Executed in Parrallel: There are essen-
tially no dependencies between the residual blocks within
each stage, allowing for parallel processing. Each residual
block in Stages 2-5 is individually deployed to a function
for parallel computation.
b) Final Aggregation: The last residual block of each stage
outputs the feature maps to the first residual block of the
next stage.

5

Dean&Francis

1738

ISSN 2959-6157

3. Experiments and Analysis

3.1 Experiment Design

3.1.1 Experiment Objectives

This experiment aims to evaluate the improvement in in-
ference performance on Serverless computing platforms
by comparing key metrics such as average inference time,
average resource utilization, and average network laten-
cy for the model partitioning and distributed inference
schemes.
3.1.2 Experiment Environment

The experiment is set up on the Aliyun Function Compute
platform. Each function is configured as an independent
serverless function, with a memory size of 512MB and
a CPU core count of 0.35. A consistent Python runtime
environment is used to ensure that the dependency library
versions are uniform. For testing, 100 images are ran-
domly selected from the ImageNet validation set. Param-
eter passing between functions occurs over the server‘s
internal network, while local calls and result returns are
transmitted via the external access address provided by
the server. The comparison includes a baseline scheme,
where the complete ResNet50 model is deployed in a
single serverless function for inference, and an optimized
scheme that employs model partitioning and distributed
inference methods. The real-time monitoring data provid-
ed by the Alibaba Cloud platform includes inference time
and resource utilization, while network latency needs to
be extracted from the results returned by the functions.

3.2 Experiment Procedure

3.2.1 Comparison Metrics

The evaluation metrics for the experiment include: av-
erage inference time, which represents the total time re-
quired to process a single image; average cold start time,
which is the initialization time during the first function
call; average CPU utilization; average memory usage; and
average network latency, which refers to the average net-
work delay when passing parameters between functions.
Together, these metrics provide a comprehensive under-
standing of the inference performance under different
schemes.
3.2.2 Experiment Scheme

First, the ResNet50 deep learning model needs to be
pre-downloaded to the Alibaba Cloud Function Compute
platform. Then, three different experiments are designed
based on three schemes: single-function inference (Base-
line Scheme), inference after preliminary model parti-

tioning (Preliminary Scheme), and inference after further
parallel processing (Advanced Scheme).
The Baseline Scheme involves directly deploying the
inference function to the cloud platform, then locally in-
voking the trigger and monitoring relevant data once the
results are returned.
For the Preliminary Scheme, five different functions need
to be created on the platform. In each function, the mod-
el is chunk-loaded according to the partitioning scheme
using PyTorch‘s loading function. The functions interact
with each other and return results according to a pipelined
flowchart. Finally, the first cloud function is called locally
via an HTTP trigger, and relevant data is monitored after
the final result is returned.
The Advanced Scheme builds on the Preliminary Scheme
by distributing the residual blocks of each stage into addi-
tional functions for parallel processing, which allows for
simultaneous execution of tasks, thereby enhancing infer-
ence efficiency.
The final result is the average of multiple experimental
results, excluding all outliers.
3.2.3 Experiment Results

Based on the updated data presented in Table 1, the av-
erage inference time for the non-partitioned inference
(Baseline Scheme) was 379 ms. In contrast, the pipeline
partitioned inference (Preliminary Scheme) increased this
time to 482 ms. However, the Advanced Scheme, which
combines pipeline partitioning with parallel processing,
significantly reduced the average inference time to 313
ms, demonstrating the effectiveness of parallel execution
in optimizing inference speed.
The average cold start time was 947 ms for the Baseline
Scheme, which increased to 1023 ms for the Preliminary
Scheme, indicating that model partitioning may introduce
additional initialization overhead. The Advanced Scheme,
however, reduced the cold start time to 731 ms, suggest-
ing that the parallelization approach helps mitigate some
of the initialization delays.
In terms of CPU utilization, the Baseline Scheme achieved
an average utilization of 92.1%, while the Preliminary
Scheme showed a slight decrease to 89.3%. The Advanced
Scheme, on the other hand, increased the average CPU
utilization to 93.5%. This suggests that parallel processing
may improve resource efficiency in inference tasks; how-
ever, the changes observed in the data are not particularly
significant, indicating that other factors, such as CPU per-
formance bottlenecks, may be influencing the results.
Regarding memory usage, the Baseline Scheme consumed
an average of 1481.2 MB, which is significantly higher
than the 684.8 MB used in the Preliminary Scheme. The
Advanced Scheme showed a slight increase in memory

6

Dean&Francis

1739

CHAng LIU

usage to 779.4 MB, reflecting the additional overhead
from parallel execution while still remaining lower than
the Baseline Scheme.
Lastly, the average network delay for parameter transmis-
sion was 50 ms in the Baseline Scheme, which increased
to 179 ms for the Preliminary Scheme and further to 223

ms for the Advanced Scheme. This indicates that while
partitioning and parallelization improve inference speed,
they also introduce additional latency due to the need for
inter-function communication over the network, which
could impact overall performance.

Table 1 Experimental Results

Metrics Baseline Scheme Preliminary Scheme Advanced Scheme
Average Inference Time (ms) 379 482 313

Initial Load Time (ms) 947 1023 731
CPU Utilization (%) 92.1 89.3 93.5
Memory Usage (MB) 1481.2 684.8 779.4
Network Latency (ms) 50 179 223

3.3 Analysis and Discussion
The proposed approach offers several advantages, includ-
ing notable performance improvements, as concurrent
inference effectively enhances service efficiency. The
distributed architecture also provides better resilience and
fault tolerance; if one function fails, it does not result in a
complete service outage. Furthermore, the method reduces
the resource configuration requirements for each function,
leading to lower costs for cloud service usage. Although
the average inference time increased in the pipeline par-
titioned scheme, the advanced scheme demonstrated sig-
nificant improvements in inference speed, suggesting that
parallel processing can optimize resource utilization.
Despite these advantages, potential issues remain. Net-
work latency may introduce additional delays, particularly
during cross-region deployments, as indicated by the in-
creased average network delay in the pipeline partitioned
and advanced schemes. This challenge can be mitigated
by optimizing function deployment locations and employ-
ing more efficient serialization methods. Additionally, the
increased complexity of the system architecture requires
robust monitoring and management mechanisms to ensure
smooth operation, especially given the varying cold start
times and the need for effective resource allocation to pre-
vent CPU performance bottlenecks.

4. Conclusion
This study proposes a model partitioning and distribut-
ed inference method aimed at optimizing deep learning
inference tasks on serverless computing platforms. The
experiments involved splitting a large model into multiple
sub-models and deploying them as independent serverless
functions, allowing for parallelization of the inference

process and efficient resource utilization. The experimen-
tal results demonstrate that this approach significantly
reduces average inference time and resource consumption
while maintaining high CPU utilization.
However, several potential issues have been identified.
Future research should focus on optimizing cross-region
deployment strategies to minimize network latency, which
has been shown to increase in distributed settings. This
includes developing intelligent function placement algo-
rithms and exploring more efficient serialization methods
to enhance overall performance. Additionally, as system
complexity increases, robust monitoring and management
solutions will be crucial for ensuring smooth operation.
Investigating automated tools and adaptive frameworks
will help improve user experiences and operational effi-
ciency across various applications.

References
[1] Zhang C, Yu M, Wang W, et al. Enabling cost-effective,
slow machine learning inference serving on public cloud. IEEE
Transactions on Cloud Computing, 2020, 10(3): 1765-1779.
[2] Bhattacharjee A. Algorithms and Techniques for Automated
Deployment and Efficient Management of Large-Scale
Distributed Data Analytics Services. Vanderbilt University,
2020.
[3] Wen X, Zeng T, Li C, et al. Research on Model Inference
Service Switching Method for Serverless Computing. Computer
Engineering and Science, 2024, 46(07): 1210.
[4] Chaitanya K T. EXPLORING SERVER-LESS COMPUTING
FOR EFFICIENT RESOURCE MANAGEMENT IN CLOUD
ARCHITECTURES. Journal of Science Technology and
Research (JSTAR), 2023, 4 (1):77-83.
[5] Mampage A, Karunasekera S, Buyya R. A holistic view on
resource management in serverless computing environments:

7

Dean&Francis

1740

ISSN 2959-6157

Taxonomy and future directions. ACM Computing Surveys
(CSUR), 2022, 54(11s): 1-36.
[6] Shafiei H, Khonsari A, Mousavi P. Serverless computing:
a survey of opportunities, challenges, and applications. ACM
Computing Surveys, 2022, 54(11s): 1-32.
[7] Yu M, Jiang Z, Ng H C, et al. Gillis: Serving large neural
networks in serverless functions with automatic model

partitioning//2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2021: 138-148.
[8] Hassan H B, Barakat S A, Sarhan Q I. Survey on serverless
computing. Journal of Cloud Computing, 2021, 10: 1-29.
[9] Koonce B. ResNet 50. In: Convolutional Neural Networks
with Swift for Tensorflow. Apress, Berkeley, CA. https://doi.
org/10.1007/978-1-4842-6168-2_6, 2021.

8

