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Abstract:
This study proposes a distributed inference method based 
on the ResNet50 model, aiming to improve inference 
efficiency and resource utilization by dividing the model 
into multiple sub-models. Specifically, the model is divided 
into the initial convolutional layer, four stages of residual 
blocks, and the subsequent global average pooling and fully 
connected layers. Each sub-model independently handles 
specific tasks, allowing for parallel execution on different 
computing devices, thereby accelerating the overall 
inference process. This partitioning strategy effectively 
addresses high-concurrency requests, enhancing the 
system‘s response speed. Additionally, it enables dynamic 
scaling of resources based on workload demands, which 
is crucial for real-time applications. The implementation 
of distributed inference also makes the model more 
flexible, adapting to various computing resources and 
application scenarios. Experimental results indicate that 
this method significantly enhances inference efficiency 
while maintaining model performance, providing new 
ideas and solutions for the practical application of deep 
learning models. These findings underscore the potential 
of distributed architectures in advancing the deployment of 
complex neural networks across diverse environments.

Keywords: Serverless; ResNet50; Model Partitioning; 
Parallel Execution; Inference Efficiency.

1. Introduction
In modern deep learning applications, inference ef-
ficiency and resource utilization are crucial factors 
for achieving high-performance systems. In recent 
years, researchers worldwide have made significant 
progress in optimizing machine learning inference ef-

ficiency on serverless computing platforms. In 2019, 
Zhang Chengliang and colleagues proposed a meth-
od that utilizes cloud computing services to achieve 
low-cost, high-benefit machine learning inference 
services that meet service quality requirements [1]. 
This research employed model compression and 
dynamic resource scheduling strategies to enhance 
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service quality while ensuring cost-effectiveness, optimiz-
ing the performance of enterprise-level inference services. 
Similarly, Bhattacharjee et al. presented an efficient and 
scalable serverless system for deep learning prediction 
tasks in a 2020 paper [2]. This study explored effective 
resource allocation and scheduling management, as well 
as optimizing the inference efficiency of deep learning 
models. On the cloud service platform front, Alibaba 
Cloud’s Model Service offers comprehensive support, 
enabling developers to quickly deploy trained models as 
service endpoints via its API and SDK, while utilizing 
traffic distribution strategies for automatic scaling [3]. 
Google Cloud Functions, on the other hand, allows users 
to run code without managing infrastructure, providing 
high flexibility for machine learning applications based on 
serverless computing platforms [4].
Existing research has focused on improving the efficiency 
of public cloud applications, such as achieving smarter 
resource utilization in serverless environments and explor-
ing technologies like dynamic task scheduling and pre-
dictive model optimization to reduce latency and enhance 
system efficiency [5]. Additionally, researchers have made 
discussions about how to support various deep learn-
ing frameworks and tools to meet the needs of different 
models [6]. These experimental results provide valuable 
theoretical foundations and practical experience for future 
research, as well as guidance for future directions.
This paper focuses on the increasing demand for intel-
ligent applications and identifies that traditional sin-
gle-model inference methods struggle to handle the chal-
lenges of high concurrent requests. To address this issue, 
the study proposes a distributed inference method based 
on the ResNet50 model. This approach leverages model 

partitioning for parallel processing, thereby accelerating 
the inference process and enhancing system response 
speed [7]. Each sub-model focuses on specific tasks and 
can flexibly adapt to different computing devices and re-
source configurations. This distributed inference strategy 
not only effectively improves inference efficiency but also 
provides new ideas and solutions for the practical appli-
cation of deep learning models. Experimental results val-
idate that this method enhances inference efficiency while 
maintaining model performance, laying a foundation for 
future research and applications.

2. Algorithm Design

2.1 Overview
In the process of optimizing the inference performance of 
deep learning models on serverless computing platforms, 
the key lies in improving the consumption of compu-
tational resources and time. In traditional single-node 
inference methods, large models often face issues such 
as excessive inference latency and limited computational 
resources, resulting in low actual inference performance 
[8]. To address this problem, this paper proposes a method 
of model partitioning and distributed inference based on 
the large deep learning model ResNet50. By dividing the 
model into multiple sub-models and deploying them in 
different serverless functions, the method aims to paral-
lelize inference tasks, thereby optimizing inference per-
formance.

2.2 Model Partition Strategy

2.2.1 Details of Resnet50
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Fig. 1  Structure of Resnet50
ResNet50 is a deep residual network [9], as illustrated in 
Fig. 1. The diagram illustrates a typical ResNet50 model 
architecture. The model consists of five main stages (Stage 
0 to Stage 4), each containing a series of convolutional 
layers and residual blocks. First, the input image size is 
(3,224,224). After the initial CONV layer (7x7 convo-
lution and 3x3 max pooling), the output size becomes 
(64,56,56). This is Stage 0. Then, the model enters Stage 
1, which contains a single BTKW1 residual block. BTKW 
stands for “Bottleneck Transformation with Kernel 
Weights”, which is a type of residual transformation with 
a bottleneck structure. The input and output sizes of this 
block are (64,56,56) and (256,56,56), respectively. Next 
is Stage 2, which includes three parallel BTKW2 residual 
blocks. Each BTKW2 block has an input and output size 
of (512,28,28). These parallel residual blocks can enhance 
the model’s representational capacity. Afterward, there are 
Stage 3 and Stage 4, containing 4 and 6 parallel BTKW 
residual blocks, respectively. The input and output sizes of 

these blocks continue to evolve, reflecting the transforma-
tion of feature maps. The overall model structure utilizes 
residual connections (dashed arrows) to enhance gradient 
flow, increasing the model’s depth and performance. The 
numbers in parentheses indicate the channel, height, and 
width dimensions of each layer. This residual block-based 
deep learning model architecture is highly powerful and 
has demonstrated excellent performance in various com-
puter vision tasks. This design also allows each block to 
be processed independently of the others. As a result, the 
modular nature of the residual structure enables them to 
be partitioned and combined effectively.
2.2.2 Partition Concept

The ResNet50 model consists of five stages, allowing the 
model to be partitioned into five sub-models by stage. The 
principles that should be followed when partitioning are:
1. Balanced Computational Load: Ensure that the com-
putational workload of each sub-model is as balanced as 
possible to prevent any single sub-model from becoming 
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a bottleneck.
2. Minimize Data Transfer: The intermediate results 
passed between sub-models should be kept as small as 
possible to reduce network transmission latency.
2.2.3 Partition Scheme

Based on the hierarchical structure of ResNet50, it can be 
partitioned into the following five sub-models:
1. Initial Convolutional Layer Sub-model
a) Composition: Input Layer, Initial Convolutional Layer, 
Batch Normalization Layer, ReLU Activation Layer, Max 
Pooling Layer.
b) Function: Extract initial features from the image.
2. First Stage Residual Block Sub-model
a) Composition: The two residual blocks of the first stage, 
layer1.
b) Function: Extract deeper features to construct more 
complex representations.
3. Second Stage Residual Block Sub-model
a) Composition: The two residual blocks of the second 
stage, layer2.
b) Function: Further enhance features.
4. Third Stage Residual Block Sub-model
a) Composition: The two residual blocks of the third 
stage, layer3.
b) Function: Extract high-level features.
5. Fourth Stage Residual Block and Subsequent Layers 
Sub-model
a) Composition: The two residual blocks of the fourth 
stage, layer4, global average pooling layer, and fully con-
nected layer.
b) Function: Complete the final feature aggregation and 
classification task.

2.3 Distributed Inference Strategy

2.3.1 Preliminary Scheme

Fig. 2  Distributed Reasoning Process
According to the model partitioning scheme mentioned 
earlier, the sub-model deployment can be initially de-
signed as a pipeline scheme, where the output of each 
sub-model directly serves as the input for the next. As 
shown in Fig. 2, a trigger first calls Function 1 locally and 
passes image data to it. Function 1 then triggers Function 
2, passing the inference results from Function 1, and so 
on, until Function 5 returns the classification results to the 
local environment. Each sub-model only needs to focus 
on how to receive and process data from the previous 
sub-model, without the need to communicate with other 
sub-models. This maximizes the potential for parallel pro-
cessing while reducing complex dependencies.
This pipelined deployment can improve the overall infer-
ence efficiency, as the individual sub-models can execute 
in parallel, thereby reducing the total time for the final 
classification result to be returned to the local environ-
ment. In contrast, if a global model deployment is adopt-
ed, each inference task would require loading the entire 
model, which may result in low resource utilization and 
longer inference times. The pipeline scheme, by breaking 
down the large model into smaller sub-models, effectively 
reduces the resource requirements for individual func-
tions, and leverages the parallelism between functions to 
optimize the overall performance.
2.3.2 Advanced Scheme
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Fig. 3  Distributed Reasoning Process
The structure of ResNet50 has certain serial dependencies; 
however, the residual blocks within each stage possess 
high parallel potential, especially since the computations 
within each residual block are independent. Therefore, 
these residual blocks can be distributed across different 
functions for processing. Additionally, for more complex 
convolution operations, further parallelization can be 
achieved at the layer level. The structure of this scheme 
is illustrated in Fig. 3, with the specific parallel steps out-
lined as follows:
1. Stage 1 (Initial Convolution Layer and Pooling Layer):
Since Stage 1 is relatively simple, it can be processed 

directly within a single cloud function. The input data is 
preprocessed to generate initial feature maps, which serve 
as input for Stage 2.
2. Stages 2-5 (Multiple Residual Blocks):
a) Residual Blocks Executed in Parrallel: There are essen-
tially no dependencies between the residual blocks within 
each stage, allowing for parallel processing. Each residual 
block in Stages 2-5 is individually deployed to a function 
for parallel computation.
b) Final Aggregation: The last residual block of each stage 
outputs the feature maps to the first residual block of the 
next stage.
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3. Experiments and Analysis

3.1 Experiment Design

3.1.1 Experiment Objectives

This experiment aims to evaluate the improvement in in-
ference performance on Serverless computing platforms 
by comparing key metrics such as average inference time, 
average resource utilization, and average network laten-
cy for the model partitioning and distributed inference 
schemes.
3.1.2 Experiment Environment

The experiment is set up on the Aliyun Function Compute 
platform. Each function is configured as an independent 
serverless function, with a memory size of 512MB and 
a CPU core count of 0.35. A consistent Python runtime 
environment is used to ensure that the dependency library 
versions are uniform. For testing, 100 images are ran-
domly selected from the ImageNet validation set. Param-
eter passing between functions occurs over the server‘s 
internal network, while local calls and result returns are 
transmitted via the external access address provided by 
the server. The comparison includes a baseline scheme, 
where the complete ResNet50 model is deployed in a 
single serverless function for inference, and an optimized 
scheme that employs model partitioning and distributed 
inference methods. The real-time monitoring data provid-
ed by the Alibaba Cloud platform includes inference time 
and resource utilization, while network latency needs to 
be extracted from the results returned by the functions.

3.2 Experiment Procedure

3.2.1 Comparison Metrics

The evaluation metrics for the experiment include: av-
erage inference time, which represents the total time re-
quired to process a single image; average cold start time, 
which is the initialization time during the first function 
call; average CPU utilization; average memory usage; and 
average network latency, which refers to the average net-
work delay when passing parameters between functions. 
Together, these metrics provide a comprehensive under-
standing of the inference performance under different 
schemes.
3.2.2 Experiment Scheme

First, the ResNet50 deep learning model needs to be 
pre-downloaded to the Alibaba Cloud Function Compute 
platform. Then, three different experiments are designed 
based on three schemes: single-function inference (Base-
line Scheme), inference after preliminary model parti-

tioning (Preliminary Scheme), and inference after further 
parallel processing (Advanced Scheme).
The Baseline Scheme involves directly deploying the 
inference function to the cloud platform, then locally in-
voking the trigger and monitoring relevant data once the 
results are returned.
For the Preliminary Scheme, five different functions need 
to be created on the platform. In each function, the mod-
el is chunk-loaded according to the partitioning scheme 
using PyTorch‘s loading function. The functions interact 
with each other and return results according to a pipelined 
flowchart. Finally, the first cloud function is called locally 
via an HTTP trigger, and relevant data is monitored after 
the final result is returned.
The Advanced Scheme builds on the Preliminary Scheme 
by distributing the residual blocks of each stage into addi-
tional functions for parallel processing, which allows for 
simultaneous execution of tasks, thereby enhancing infer-
ence efficiency.
The final result is the average of multiple experimental 
results, excluding all outliers.
3.2.3 Experiment Results

Based on the updated data presented in Table 1, the av-
erage inference time for the non-partitioned inference 
(Baseline Scheme) was 379 ms. In contrast, the pipeline 
partitioned inference (Preliminary Scheme) increased this 
time to 482 ms. However, the Advanced Scheme, which 
combines pipeline partitioning with parallel processing, 
significantly reduced the average inference time to 313 
ms, demonstrating the effectiveness of parallel execution 
in optimizing inference speed.
The average cold start time was 947 ms for the Baseline 
Scheme, which increased to 1023 ms for the Preliminary 
Scheme, indicating that model partitioning may introduce 
additional initialization overhead. The Advanced Scheme, 
however, reduced the cold start time to 731 ms, suggest-
ing that the parallelization approach helps mitigate some 
of the initialization delays.
In terms of CPU utilization, the Baseline Scheme achieved 
an average utilization of 92.1%, while the Preliminary 
Scheme showed a slight decrease to 89.3%. The Advanced 
Scheme, on the other hand, increased the average CPU 
utilization to 93.5%. This suggests that parallel processing 
may improve resource efficiency in inference tasks; how-
ever, the changes observed in the data are not particularly 
significant, indicating that other factors, such as CPU per-
formance bottlenecks, may be influencing the results.
Regarding memory usage, the Baseline Scheme consumed 
an average of 1481.2 MB, which is significantly higher 
than the 684.8 MB used in the Preliminary Scheme. The 
Advanced Scheme showed a slight increase in memory 
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usage to 779.4 MB, reflecting the additional overhead 
from parallel execution while still remaining lower than 
the Baseline Scheme.
Lastly, the average network delay for parameter transmis-
sion was 50 ms in the Baseline Scheme, which increased 
to 179 ms for the Preliminary Scheme and further to 223 

ms for the Advanced Scheme. This indicates that while 
partitioning and parallelization improve inference speed, 
they also introduce additional latency due to the need for 
inter-function communication over the network, which 
could impact overall performance.

Table 1  Experimental Results

Metrics Baseline Scheme Preliminary Scheme Advanced Scheme
Average Inference Time (ms) 379 482 313

Initial Load Time (ms) 947 1023 731
CPU Utilization (%) 92.1 89.3 93.5
Memory Usage (MB) 1481.2 684.8 779.4
Network Latency (ms) 50 179 223

3.3 Analysis and Discussion
The proposed approach offers several advantages, includ-
ing notable performance improvements, as concurrent 
inference effectively enhances service efficiency. The 
distributed architecture also provides better resilience and 
fault tolerance; if one function fails, it does not result in a 
complete service outage. Furthermore, the method reduces 
the resource configuration requirements for each function, 
leading to lower costs for cloud service usage. Although 
the average inference time increased in the pipeline par-
titioned scheme, the advanced scheme demonstrated sig-
nificant improvements in inference speed, suggesting that 
parallel processing can optimize resource utilization.
Despite these advantages, potential issues remain. Net-
work latency may introduce additional delays, particularly 
during cross-region deployments, as indicated by the in-
creased average network delay in the pipeline partitioned 
and advanced schemes. This challenge can be mitigated 
by optimizing function deployment locations and employ-
ing more efficient serialization methods. Additionally, the 
increased complexity of the system architecture requires 
robust monitoring and management mechanisms to ensure 
smooth operation, especially given the varying cold start 
times and the need for effective resource allocation to pre-
vent CPU performance bottlenecks.

4. Conclusion
This study proposes a model partitioning and distribut-
ed inference method aimed at optimizing deep learning 
inference tasks on serverless computing platforms. The 
experiments involved splitting a large model into multiple 
sub-models and deploying them as independent serverless 
functions, allowing for parallelization of the inference 

process and efficient resource utilization. The experimen-
tal results demonstrate that this approach significantly 
reduces average inference time and resource consumption 
while maintaining high CPU utilization.
However, several potential issues have been identified. 
Future research should focus on optimizing cross-region 
deployment strategies to minimize network latency, which 
has been shown to increase in distributed settings. This 
includes developing intelligent function placement algo-
rithms and exploring more efficient serialization methods 
to enhance overall performance. Additionally, as system 
complexity increases, robust monitoring and management 
solutions will be crucial for ensuring smooth operation. 
Investigating automated tools and adaptive frameworks 
will help improve user experiences and operational effi-
ciency across various applications.
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