
ISSN 2959-6157

Dean&Francis

1765

Abstract:
As an innovative communication method, brain-computer 
interface (BCI) can directly convert human brain activity 
into control signals, which is of great significance in 
improving the quality of life of people with disabilities. 
In this paper, the application of steady-state visual evoked 
potential (SSVEP) in BCI is discussed, and the feature 
extraction and classification methods of EEG signals 
are studied. Feature extraction of EEG signals was 
performed by preprocessing them using the EEGLAB 
toolbox and classification using support vector machine 
(SVM) to identify different patterns of EEG activity. The 
experimental results show that this feature extraction 
and classification method significantly improves the 
performance of BCI system. Future research can further 
optimize the feature extraction algorithm and improve the 
visual stimulation paradigm to improve the recognition 
accuracy and practicality of the system. Additionally, 
integrating advanced machine learning techniques such 
as deep learning and transfer learning could potentially 
enhance the system’s ability to adapt to individual users 
and generalize across different tasks, thereby increasing the 
robustness and versatility of the BCI system in real-world 
applications.

Keywords: Steady-state visual evoked potentials; Fea-
ture extraction; Visual neural networks; Brain-computer 
interface

1. Introduction
In recent years, research on Brain Computer Interface 
(BCI) has rapidly developed, providing innovative 
methods for direct communication between the hu-
man brain and external devices. Among the various 
modes of BCI, electroencephalography (EEG) stands 
out as a particularly promising approach, owing to its 

non-invasive nature, high temporal resolution, and 
relatively low cost [1]. EEG records the electrical 
activity of the brain, making it a powerful tool for 
analyzing the brain’s response to different stimuli, 
including visual stimuli.
Visual evoked potential (VEP) is a specific EEG re-
sponse triggered by visual stimuli and has been wide-
ly used in clinical and research fields. VEP provides 
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important insights into visual cortex function and overall 
neural processing of visual information [2]. By analyzing 
EEG data of various visual stimuli in the brain, research-
ers can decode potential neural mechanisms and develop 
robust classification systems for BCI [3]. The core objec-
tive of this study is to explore EEG feature extraction and 
classification related to visual neural activity. Specifically, 
we focus on developing effective classification methods to 
distinguish between different visual stimuli. The achieve-
ment of this goal will not only improve the performance 
of BCI systems, but also provide a new perspective for 
understanding the neural mechanisms of visual informa-
tion processing.

2. EEG Feature Extraction and Classi-
fication of SSVEP

2.1 Research Methodology
This study utilizes a publicly available EEG dataset as 
the data source, aiming to conduct an in-depth analysis 
of brain activity patterns to enhance our understanding 
of neural activities. Our methodology encompasses sev-
eral key steps, including data preprocessing, feature ex-
traction, and classification model application. In the data 
preprocessing phase, we employ the MATLAB EEGLAB 
toolbox, starting with electrode localization to ensure the 
spatial accuracy of the signals. Subsequently, a bandpass 
filter, typically set in the range of 1-40 Hz, is applied to 
remove low-frequency drift and high-frequency noise, 
thereby ensuring the quality of the signals. Following this, 
Independent Component Analysis (ICA) is performed to 
separate independent components from the mixed signals. 
ICA operates on the assumption that observed signals are 
linear mixtures of independent source signals, using statis-
tical methods to identify these sources, effectively remov-
ing artifacts such as eye movements and muscle activity, 
resulting in cleaner EEG signals [4]. During the feature 
extraction phase, various key features are extracted from 
the preprocessed EEG signals, primarily including the 
mean and standard deviation in the time domain. These 
features reflect the fundamental statistical properties of 
the signals and are organized into a feature matrix that 
combines the features of each trial, providing a solid foun-
dation for subsequent classification. Our current approach 
focuses on time-domain features, offering simplicity 
and computational efficiency. However, considering the 
complexity of EEG signals, future work may incorporate 
frequency domain and time-frequency features to further 
enhance model performance. In terms of classification 
models, the study applies Support Vector Machine (SVM) 

for feature classification [5]. SVM is a powerful super-
vised learning algorithm capable of effectively handling 
high-dimensional data and finding the optimal hyperplane 
to separate different classes. To comprehensively evaluate 
the classifier’s perform, a 10-fold cross-validation method 
is employed, dividing the dataset into ten folds to ensure 
that each sample has the opportunity to serve as a test 
set, thereby improving the model’s generalization ability. 
Furthermore, the study visualizes the classification results 
through a confusion matrix, providing an intuitive display 
of the classifier’s performance across various categories. 
The confusion matrix not only presents the predicted 
results for each category but also reveals the model’s con-
fusion between different classes, highlighting which brain 
activity patterns are more prone to misclassification and 
providing direction for further improvements. This series 
of methods collectively provides effective technical sup-
port for the analysis of EEG signals, advancing our under-
standing of brain activity patterns. Specifically, it enables 
more accurate identification and classification of different 
brain activity states, laying the foundation for applications 
in brain-computer interfaces, neurological disease diagno-
sis, and other related fields. Future research will continue 
to explore more complex features and models to further 
enhance classification performance and broaden the scope 
of applications.

2.2 Experimental Principles
The experimental design consists of four fundamental 
steps: data preprocessing, feature extraction, classification, 
and results visualization. We utilize a publicly available 
EEG dataset from the Brain-Computer Interface Labora-
tory at Tsinghua University as our primary data source. In 
the data preprocessing step, we employ the MATLAB EE-
GLAB toolbox to ensure the quality and spatial accuracy 
of the EEG signals, which includes electrode localization 
and the application of a bandpass filter (typically 1-40 
Hz) to remove noise and artifacts. The feature extraction 
phase focuses on deriving key characteristics from the 
preprocessed EEG signals, primarily including statistical 
features such as the mean and standard deviation in the 
time domain. These features are organized into a feature 
matrix, providing the foundational data for subsequent 
classification. For the classification step, we apply Support 
Vector Machine (SVM) to identify different brain activity 
patterns, leveraging its ability to handle high-dimension-
al data effectively. To evaluate the model’s performance 
comprehensively, we implement a 10-fold cross-validation 
method [6]. Finally, in the results visualization step, we 
utilize a confusion matrix to provide an intuitive display 
of the classifier’s performance across various categories, 
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offering insights into the model’s strengths and areas for 
potential improvement. This systematic approach not 
only advances our understanding of neural activities but 
also lays the groundwork for applications in brain-com-
puter interfaces and neurological research. Regarding 
the data type and basic data, the EEG signal data used 
in this experiment is sourced from the Brain-Computer 
Interface Laboratory at Tsinghua University. EEG signals 
are typically stored in matrix form, with dimensions rep-
resented as [number of channels, number of time points, 
and number of trials]. In this experiment, the data dimen-
sions are [64, 1500, 40, 6], indicating 64 channels, 1500 
time points, 40 trials, and 6 conditions. The specific basic 
data includes 64 channels (i.e., 64 electrodes), 1500 time 
points (sampling points for each trial), 40 trials (the num-
ber of measurements conducted in the experiment), and 
6 conditions (the six different conditions involved in the 
experiment). Through these steps and data, the experiment 
aims to conduct an in-depth analysis of EEG signals and 
identify brain activity patterns.

2.3 Experimental Procedures
The experimental design for analyzing EEG signals en-
compasses a systematic workflow that ensures the integri-
ty and accuracy of the data throughout various stages. The 

process initiates with data acquisition, where we retrieve 
EEG signal data and electrode location files from the data-
base and efficiently integrate them into the EEGLAB en-
vironment for subsequent analysis. This crucial step lays 
the foundation for the entire analytical workflow, ensuring 
the integrity and accessibility of the raw data. Follow-
ing this, the signal preprocessing phase applies essential 
techniques such as bandpass filtering and Independent 
Component Analysis (ICA) to enhance signal quality by 
removing artifacts and noise. Next, the feature extraction 
stage focuses on deriving key statistical features from the 
preprocessed signals, which serve as the foundation for 
subsequent classification. The label preparation step en-
sures that each trial is accurately labeled according to the 
experimental design, facilitating effective model training. 
The classification phase employs Support Vector Machine 
(SVM) to identify distinct brain activity patterns, while 
the final results visualization stage presents the classifi-
cation outcomes through confusion matrices and scatter 
plots, providing insights into the model’s performance and 
the underlying EEG data characteristics. Each of these 
steps is crucial for achieving a comprehensive understand-
ing of brain activity patterns through EEG analysis, as 
shown in Fig. 1.

Fig. 1 Experimental Procedures (Photo/Picture credit: Original).
2.3.1 Data Loading:

The experiment begins by setting the file path for the 
data, ensuring proper access to the EEG signal data and 

electrode location files stored on the local computer. The 
EEG data file (e.g., S1.mat) containing the recorded sig-
nals are loaded using MATLAB’s load function. This step 
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imports the experimental EEG data into the workspace, 
making it readily available for subsequent preprocessing 
and analysis within the EEGLAB environment. Subse-
quently, the ‘pop_importdata’ function from the EEGLAB 
toolbox is employed to import the data into the EEGLAB 
environment, specifying the data format as MATLAB, 
setting the sampling rate to 256 Hz, the number of chan-
nels to 64, and the number of time points to 1500, thereby 
ensuring that the data structure meets the requirements of 
EEGLAB. Additionally, the electrode location file (e.g., 
‘64-channels. loc’) is loaded to ensure the spatial accuracy 
of the EEG signals. Finally, the ‘eeg_checkset’ function is 
used to verify the integrity and consistency of the dataset, 
ensuring that the foundational data for subsequent pro-
cessing is reliable, as shown in Fig. 2.

Fig. 2 Electrode position (Photo/Picture 
credit: Original).

2.3.2 Signal Preprocessing:

In the signal preprocessing phase, a bandpass filter is first 
applied, typically set in the range of 1-40 Hz. This filter 
removes low-frequency drift and high-frequency noise, 
ensuring the quality of the EEG signals. The low-frequen-
cy components often include artifacts caused by heartbeat 
and respiration, while high-frequency noise may result 
from electrical interference and other environmental fac-
tors. By eliminating these unwanted elements, we enhance 
the signal-to-noise ratio and focus on the brain activity 
patterns of interest for our analysis. Thereby ensuring the 
quality of the EEG signals. Next, Independent Compo-
nent Analysis (ICA) is performed to separate independent 
components from the mixed signals, effectively removing 
artifacts and noise (such as eye movements and muscle 
activity), resulting in cleaner EEG signals. The ICA is 
executed using the ‘pop_runica’ function, and the ICA 
components are examined with the ‘pop_selectcomps’ 
function, allowing the researcher to manually identify and 
remove components associated with eye and muscle activ-

ity. This process typically requires the researcher to assess 
the waveforms and spectra of the components to ensure 
that the removed components are indeed artifacts. Finally, 
the processed dataset is saved for further analysis using 
the ‘pop_saveset’ function, storing the processed EEG 
data in ‘.set’ file format.
2.3.3 Feature Extraction:

During the feature extraction phase, key features are ex-
tracted from each trial, primarily including the mean and 
standard deviation in the time domain. These statistical 
measures provide fundamental insights into the signal 
characteristics. However, EEG analysis often benefits 
from a multi-domain approach. Frequency domain fea-
tures, such as power spectral density (PSD), offer valuable 
information about the signal’s energy distribution across 
different frequency bands. Additionally, time-frequency 
features like wavelet coefficients capture both temporal 
and spectral properties of the EEG signals, providing a 
more comprehensive representation of brain activity pat-
terns. While our current study focuses on time domain 
features for their computational efficiency, future work 
may incorporate these additional feature types to enhance 
the model’s discriminative power and capture more nu-
anced aspects of neural dynamics.
These features reflect the fundamental statistical proper-
ties of the signals and are organized into a feature matrix 
that combines the features of each trial. Initially, a feature 
matrix is initialized, with the number of rows correspond-
ing to the number of trials and the number of columns 
corresponding to the number of extracted features (mean 
and standard deviation for each channel). By iterating 
through each channel and trial, the mean and standard 
deviation for each trial are calculated and stored in the 
appropriate positions within the feature matrix. For each 
trial, the mean and standard deviation for each channel are 
computed and stored. This process results in a comprehen-
sive feature matrix, providing a solid foundation for sub-
sequent classification. The matrix encapsulates essential 
statistical properties of the EEG signals across all chan-
nels and trials, effectively reducing the high-dimensional 
raw data while retaining critical information about brain 
activity patterns [7].
2.3.4 Label Preparation:

Labels are generated based on the experimental design, 
reflecting the specific conditions or tasks associated with 
each trial. For example, in a study with 6 distinct experi-
mental conditions and 40 trials per condition, labels 1 to 
6 would be repeated 40 times each. This process creates 
a label vector that precisely corresponds to the number 
of rows in the feature matrix, ensuring a one-to-one map-
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ping between features and their respective classifications. 
This careful alignment of features and labels is crucial for 
training the classification model accurately and evaluating 
its performance in distinguishing between different brain 
activity patterns. Assuming there are 6 conditions in the 
experiment, each corresponding to 40 trials, the appro-
priate labels are generated and converted into a column 
vector. The ‘repmat’ function is used to repeat the labels, 
ensuring that each trial has a corresponding label, thereby 
providing the necessary supervisory information for the 
classification model. Specifically, the label generation 
process involves repeating each condition’s label (e.g., 1 
to 6) 40 times to form a complete label vector, ensuring 
consistency with the number of rows in the feature matrix.
2.3.5 Classification:

Support Vector Machine (SVM) is employed for feature 
classification, training the model and making predictions. 
SVM is chosen for its effectiveness in high-dimensional 
spaces and its ability to handle non-linear decision bound-
aries through kernel tricks, making it particularly suitable 
for EEG classification tasks. This algorithm excels at 
finding the optimal hyperplane that maximizes the margin 
between different classes of brain activity patterns [8].
The ‘fitcecoc’ function is used to train a multi-class SVM 
model to identify different brain activity patterns. To 
evaluate the model’s performance, k-fold cross-validation 
(typically k=10) is adopted, calculating classification ac-
curacy and classification loss in each fold. This cross-val-
idation approach ensures that each sample has the oppor-
tunity to serve as a test set, thereby enhancing the model’s 
generalization ability, as shown in Fig. 3.
After training is complete, the trained model is used to 
predict the features, and a confusion matrix is generated to 
visualize the model’s performance across different catego-
ries. The confusion matrix not only provides the predicted 
results for each category but also reveals the model’s con-
fusion between different classes, aiding in the analysis of 
the model’s classification capability, as shown in Fig. 4.

Fig. 3 K-Fold cross-validation accuracy 
(Photo/Picture credit: Original).

Fig. 4 Confusion matrix (Photo/Picture 
credit: Original).

2.3.6 Results Visualization:

In the results visualization phase, a confusion matrix is 
plotted to intuitively display the classification results, as-
sisting in the analysis of the model’s performance across 
various categories. Additionally, a feature scatter plot is 
created to illustrate the distribution of different category 
samples in the feature space, helping to understand the 
model’s classification ability and the discriminative pow-
er of the features [9]. The ‘gscatter’ function is utilized 
to color the scatter plot based on the prediction results, 
providing a visual representation of the distribution of dif-
ferent category samples. Through these visualization tech-
niques, researchers can better assess the effectiveness of 
the model and provide insights for future improvements, 
as shown in Fig. 5.
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Fig. 5 Feature scatter plot (Photo/Picture credit: Original).

3. Conclusion
By loading and preprocessing EEG data, independent 
component analysis (ICA) was applied to remove arti-
facts, and features in time and frequency domains were 
extracted to construct an effective feature matrix. Then, 
support vector machine (SVM) was used to classify the 
extracted features, and the performance of the model was 
evaluated by cross-validation, and the classification ac-
curacy was calculated. The confusion matrix visualizes 
the prediction effect of the model on various categories, 
while the feature scatter plot shows the distribution of 
different categories of samples in the feature space, which 
improves the understanding and analysis ability of the 
electrical activity patterns of the brain as a whole.
Future work could focus on increasing dataset diversity 
through techniques like data augmentation or cross-sub-
ject learning, which could significantly improve the mod-
el’s generalization ability across different individuals and 
experimental conditions. In addition, we also consider 
introducing more multi-frequency and nonlinear features 
to improve the model performance. At the same time, ad-
vanced algorithms such as deep learning are explored to 
better capture complex patterns in EEG signals. Consider-
ing the computational efficiency and sensitivity to noise of 
support vector machines (SVM) when processing large-
scale data, it is possible to combine real-time data pro-
cessing and online classification techniques in the future 

to promote the practical application of EEG signal analy-
sis in clinical and brain-computer interface applications.
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