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Abstract:
Intuition and rigor are two inevitable components in 
mathematical problem-solving. Traditionally, features 
of education in mathematics show that those two 
themes are seen to be mutually exclusive rather than 
complementary. The famous foundational debate 
between L.E.J Brouwer and David Hilbert shows that 
intuition and rigor are often seen as being at odds. The 
two characteristics of mathematics play a pivotal and 
dynamic role in education, reasoning problem-solving, 
and different applications of maths. This essay delves 
into the intricate relationship between these seemingly 
contrasting approaches, underscoring their significance in 
the evolution of mathematical development. The research 
employs a blend of historical analysis and philosophical 
inquiry to explore the roles of intuition and rigor and 
how they interact. The essay argues that while intuition 
often sparks the initial insights in mathematical discovery, 
it is the rigor that ensures the robustness and validity 
of these insights, leading to their acceptance within 
the mathematical community. Through case studies of 
renowned mathematicians and well-known problems, this 
research uncovers the symbiotic nature of intuition and 
rigor and is demonstrating how they collectively contribute 
to the richness of mathematical problem-solving. Those 
findings suggest that a balanced integration of both features 
is crucial for the integrity including consistency and 
completeness of mathematical knowledge.

Keywords: Intuition, rigor, Mathematical reasoning, 
Problem-solving, Philosophical Inquiry

1. Introduction
The intricate interactions between intuition and rigor 
underpin the branches and fabrics of mathematical 
and philosophical inquiry in depth, which serve as 

the two pillars of the construction of the edifice of 
the entire field of mathematics. The term intuition 
is often referring or perceived by individuals as the 
ability to understand something instinctively and 
with no requirement of conscious reasoning or else 
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a swift, insightful, yet non-rigorous cognitive process [1, 
2]. These general and widely accepted definitions make 
it juxtaposed to alternate with the structural, meticulous, 
and formative approach of rigor, where formal proofs and 
validations continuously take place in turns [3, 4].
The coalesce of intuition and rigor process of mathemat-
ical problem solving and the impacts on individuals and 
mathematicians that synergy has on the development of 
mathematical understanding and personal perception. The 
target of this investigation lies at the confluence of the his-
tory of math especially the proliferation started in the 19th 
century as modern math gradually developed, philosophy, 
and education. This is a common aim for mathematicians 
to navigate the boundary between intuition and rigor, or in 
a higher hierarchy, the classic schools of intuitionism and 
formalism (where debates flourish between definitions of 
intuitionism especially the foundational debate between 
L.E.J. Brouwer (1881-1966) and David Hilbert (1862-
1943) [5]). Hilbert’s program aimed to make intuitionism 
ideologically accepted by his audience or supporters while 
Brouwer believed that there is a clear ‘subject matter’ that 
makes a connection with formalism [6,7]). The reflections 
and the broader significance of this interaction for its ap-
plication in maths and physics and other disciplines and 
suggestions for future research directions.
This essay endeavors to explore the vivid correspondence 
between the two modalities and examining their roles in 
different categories of mathematical problems including 
—geometry, calculus, real analysis, etc [1,4]. From case 
studies, historical and contemporary mathematics case 
studies will be analysed for their implication for math-
ematical understanding, education, and philosophical 
means which highlight their importance for knowledge 
systems and integrity.

2. geometric Proofs and Intuition in 
Euclidean geometry
Euclidean Geometry serves as the crucial foundational 
area for understanding the correspondence between in-
tuition and rigor proofs. Starting from the 19th century 
the foundation of mathematics became a mathematical 
discipline [8]. Traditional and co-existing subjects are 
viewed in new ways. The discipline of Geometry itself, 
from Pash, Hilbert, and Von Staudt was cast as a purely 
synthetic theory [8]. The intersection of intuition and rig-
or begins when there is a huge interplay of algebra and 
geometry in algebraic topology and the expansion of com-
plex function theory instead of treating algebra itself from 
its specifying structure of the number systems. Mathema-
ticians start to deeply consider the rigors behind intuition 

by replacing the act of general conditions in a specific 
field or reaching a conceptual framework. The entire sys-
tem of mathematics has become more abstract and aims 
at the philosophical essence of the theorems. Geometry 
itself, often referred to as the study of space was previous-
ly perceived as the category of natural science rather than 
pure mathematics due to its’ huge reliance on geometry 
intuition. However, based on the burgeoning interest in 
rigor which is associated with the advancement of the 
branch of mathematical logic and the axioms, the reliance 
on geometrical intuition was doubly suspect as the deeper 
logic is revealed as vague, and it is not suitable to use in a 
deductive framework. The purity of method is a common 
aim, and the discovery is that the process discovery and 
the potential of individuals and thinking malleability is 
severely pushed and inspired by intuition. The interest in 
following the formalization, axioms, basically the set of 
rules can encourage more discoveries of new axiom while 
using generalizations and reductionism as two effective 
tools for mathematical reasoning [9].

Fig. 1 The four-fold rotational symmetry and 
four symmetry planes of square and circle 

(Photo/Picture credit: Original).
A quintessential example is the Pythagorean theorem, 
which has been the subject of numerous geometric proofs 
throughout history which directly led to the first mathe-
matical crisis [10-12]. A detailed examination of Euclid’s 
proof of the Pythagorean theorem exemplifies the iterative 
process of refining intuitive insights through rigorous 
methods which is the operator-matrix method [10]. This 
proof is a demonstration of how rigorous geometric con-
struction and logical deduction can extend the pattern that 
has been observed to all right-angled triangles [13].
Another example is the intuitive understanding of the 
circle [13]. It can be considered as it possesses infinite 
fold rotational symmetry and the number of symmetry of 
planes preconditions in the square have the same number 
as it accepted, four-fold rotational symmetry and four 
symmetry planes. The circular form is also predicated on 
the square form. However, the combined two forms only 
possess four symmetry planes and a four-fold rotational 
symmetry (Fig 1).
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Fig. 2 Different proportions of circle and 
square forms (Photo/Picture credit: Original).
The proportion of the size of the circle can be just and the 
circle and square forms are shown in Fig. 2. In addition, 
the circular form enclosed in a square is seen as a funda-
mental component, a pair form with opposing qualities. 
Other models such as the ‘quadrangle’, in which the 
median line is over the division and automatically arises 
where there is only one-fold symmetry and one sym-
metry line have been presented, so the elemental angle 
is 360 degrees. By induction and intuition contribution, 
various patterns can be made by different rotation angles, 
elements, and operations to different sets [13]. It is con-
ceivable for the outcomes of objective operations to be 
resolved and complicated in ways that make it difficult or 
nearly impossible to follow reasoning. Put another way: 
the process by which objective compositions, such as 
symmetric fundamental conditions, can become uniquely 
unique creative programs via a series of superposed oper-
ations that preserve their internal compositional order. The 
intuitive understanding of the Pythagorean theorem may 
begin with the visual arrangement of squares in a geomet-
ric diagram inspired by those geometric patterns and the 
pursue of rigor suggests the theorem’s validity for specific 
instances [14].
The role of intuition in those cases starts with the recog-
nition of patterns or relationships in simple cases, similar 
to how Lantos discusses basic elements to create complex 
systems, and the realization of the Pythagorean theorem 
may discover ‘new’, which are the irrational numbers.  
On the other hand, the application of rigor is worth cred-
it. The transition from intuitive understanding to formal 
proof in Euclidean geometry mirrors the balance between 
the intuition of the artist and geometrical rigor, and at the 
same time the theorems to construct a logical argument 
that confirms the intuitive insight across all cases. Both 
processes involve an interplay of creativity and discipline, 
which ensures the final result, or the process of a result is 
satisfying both soundness in terms of logic and the pleas-
ing in aesthetics.

3 The Role of Intuition and its Rigor-
ous Foundation in the Development of 
Calculus
There are double-sided opinions towards visual intuition 
in mathematics as it serves as the bridge of insight in re-
search but allows the opportunity to generate errors. Intu-
ition is a powerful tool in calculus as it pictures out the ba-
sis. It is the ‘suitable and reasonable sense’, for instance, 
to think of continuous functions usually not differentiable 
anywhere due to the ubiquity of differentiable functions. 
The theory of calculus itself has been considered as a tiny 
part of a differentiable function that is zoomed and to ‘look’ 
straight in there. Those initial ideas of intuitive concepts 
such as the fluxions and infinitesimals [15]. These initial 
ideas are often empirical findings in the nature or human 
mind and are further examined using a rigorous mathe-
matical framework [16].

3.1 Example for Intuition Contribution: The 
Cauchy Theorem in Complex Analysis
Throughout history and examinations, proof is usually the 
last step for theorems. To think of a hypothesis that is 
worth proof is crucial and indispensable. The well-known 
Cauchy theorem in complex analysis, which asserts that 
the integral of an analytic function around a closed curve 
enclosing no singularities is zero, is an excellent example. 
In his original formulation of this theorem, Cauchy con-
sidered the complex number z x iy= +  in terms of its real 
and imaginary components. He defined the contour inte-
gral by defining it by analogy with the real case:

 ∫ z
z1

2 f z dz( )  (1)

Fig. 3 Curves with increasing x(real) and 
y(imaginary) components (Photo/Picture 

credit: Original).
Eg 1 shows that between the two points z1  and z2 , as it is 
along the curve, the real part and imaginary parts are both 
monotonic increasing and decreasing [17]. As a formal 
generalization of the real case, this restriction on the type 
of curve is natural. However, when a picture is observed 
by a certain individual, it reveals that these graphs (for x  
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and y  growing) consist of a limited collection of curves 
positioned within a rectangle, with its corners at z1  and 

z2  being opposed (Figure 3 showing the visualized pro-
cess of curves with ascending x-y components). To pro-
vide his theorem in the form of a closed curve that is fa-
miliar to modern understanding.  Cauchy had to picture 
the circumstances for a more general curve in the complex 
plane.

3.2 Example of Rigor Contribution: The notion 
of Continuity
Various case studies can examine the great influence of 
rigor in mathematical reasoning and problem-solving pro-
cesses. Initially, the method of infinitesimals, pioneered 
by Newton and Leibniz, provided a powerful yet not fully 
rigorous framework for applying them to geometric and 
analytical problems [18]. The further deeper definition 
and diagnosis of questions revealed the demand for rigor. 
If a person is asked to explain this idea, it may be present-
ed as -- a function whose graph has “no gaps” and that 
can be drawn “without taking the pencil off the paper” 
among other things. These concepts are the conceptual 
roots of “connectedness,” which is mathematically related 
but technically extremely distinct from continuity. The 
fundamental theorem’s horizontal graph stretching is un-
derstood to be the source of continuity. Examine a stream-
lined representation of the process involved in expanding 
the graph to fit within a single, horizontal pixel line. Just 
consider a model of the progress of stretching of graphs to 
confine it within a horizontal line of pixels (Fig.4).

Fig. 4 The concept of continuity through 
horizontal stretching (Photo/Picture credit: 

Original).
Fig. 4 depicts a graph of function f x( ) , which is shown 
as a smooth curve. The point x0 on the x-axis is highlight-
ed and a vertical line is drawn to the curve to indicate the 
value of the function’s value at this point, which is f x( 0 )  
(marked by a solid dot). The horizontal stretch is present-
ed, around (x0 ,  two vertical dashed lines extend 

from x Cd0 ¨  to x d0 + .  What this meant is to present a 

small interval around (x0  and point out there is a stretch 
in x direction.  Similarly, the two horizontal dashed lines 
are drawn at heights f x( 0 ) + ?  and f x( 0 ) − ?  forming a 
horizontal band. This band shows the allowed fluctuation 
in the function’s value around f x( 0 )within a small range 
of the value : ? .  In the interval of all sets of x  value 
[ x Cd0 ¨ , x d0 + ]  , the graph of f x( ) stays within this hori-
zontal band. This visualizes the rigor definition of the con-
cept of continuity, such that for every small ϵ, the vertical 
band, there exists a small d which is the horizontal inter-
val showing that the function is not deviating by more 
than the value of ϵ from f x( 0 )  when x  is within the do-
main of this interval. This concept is crucial because it 
demonstrates that if the function is continuous at x0 . Then 
by choosing a suitable and sufficiently small enough vari-
ation around the initial point, the values of the function 
satisfying the range will remain close the f x( 0 )  [19]. The 
logical statement for this in this formative and rigorous 
process will presented in: ∀ > ∃ >? 0, 0δ  such that ∀ →x

x x− <0∣ δ  , ∣ ∣f x f x( ) − <( 0 ) ?.
The In-depth analysis of the original works of Newton 
and Leibniz on calculus provides insights into the in-
tuitive leaps they made and the rigorous mathematical 
framework they developed [20]. Those methods including 
fluxions and differentials were initially based on intuitive 
reasoning but are solidly proofed. The interplay between 
intuition and rigor in the development of calculus mirrors 
the process described by Lantos, where a seemingly ab-
stract constructive procedure was set up and includes all 
the moments of a nature or empirical-based concept [17].

4. Suggestion
Mathematicians can benefit from the creative potential of 
intuition and the analytical strength of rigor. To achieve 
the ideal effect, mathematicians might engage in regular 
reflection on their problem-solving process, identifying 
more moments where it shows clearly from the case 
studies of mathematicians can benefit from balanced ap-
proaches of intuition and rigor to form an initial idea by 
intuition and further using rigorous methods to examine 
or proof their conjectures. Exploration and verification are 
equally crucial to fostering an environment conducive to 
innovative and reliable mathematical work. Moreover, in-
corporating those two abilities in mathematical education 
is essential for equipping students with a full understand-
ing of the process of problem-solving [1]. For educators, 
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designing curricula that include activities allowing stu-
dents to explore mathematical concepts through visual-
izations and interactive software [21]. This can encourage 
students to think independently and simultaneously em-
phasize the importance of formal proof and logical rea-
soning to ensure that students appreciate the necessity of 
rigor in the process of validating their ideas.

5. Conclusion
The research presented in this essay has illustrated the 
symbiotic relationship between two approaches — intu-
ition and rigor —in problem-solving. It has demonstrated 
that instead of being antagonistic, these two abilities can 
interact in various aspects (especially in geometry and 
the development of calculus). It has demonstrated that 
intuition is instrumental in the initial process of ‘forming 
ideas worth for research’ Rigor is indispensable for refin-
ing and validating these ideas of established mathematical 
principles. The historical and philosophical analysis has 
shown that the most significant advancements in mathe-
matics often result from a harmonious integration of both. 
The findings have profound implications for the field of 
this discipline, suggesting that a short-sighted focus on ei-
ther intuition or rigor could limit the scope of mathematic 
innovation. By recognizing and embracing their comple-
mentary nature, mathematicians can enhance their prob-
lem-solving capabilities. Moreover, the educational sec-
tors can benefit from these insights by revising lessons to 
ensure that students are not only well-versed in mathemat-
ical theory or solving problems but to have their ideas and 
understanding to think in deep by intuition mindset. While 
this essay has explored the interplay between intuition and 
rigor, it remains spacious room for further investigation. 
Future research could delve into the cognitive processes 
underlying mathematical intuition and other methods of 
how these can be exemplified. Additionally, studies could 
examine the impact of educational interventions that aim 
to balance intuition and rigor and discuss whether geome-
try should avoid the intuition component aiming for more 
consistent axioms and proofs. Furthermore, exploring the 
role of technology in facilitating this balance between in-
tuition and rigor presents another avenue for future work, 
particularly in the context of developing inactive software 
that enhances both intuitive and rigorous thinking in 
mathematics.
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