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Abstract:
As the area of deep learning is advancing at the speed 
of light, the issue of model interpretability is now a 
priority for a better understanding and enhancement of the 
decision-making processes implemented by sophisticated 
neural networks. So, as deeper learning models create, 
it becomes vital to guarantee greater transparency and 
interpretability, in particular, in applications as medical 
image analytics, Auto-Driving, and Security Systems. The 
process of visualization of these decisions is assisted by 
Grad-CAM which is a powerful visualization tool. The 
rationale behind this work stems from the growing concern 
on the interpretability of deep learning models with the 
hope of systematically evaluating how different models 
attend to certain regions of images during classification. 
In this study, the three deep neural network models 
were Convolutional Neural Networks (CNNs), Vision 
Transformers (ViTs), and Swin Transformer, which were 
used to classify the images with the help of Grad-CAM in 
visualizing the heatmaps of the important regions of the 
input images important for the models’ decision-making. 
The conclusively featured experimental outcomes prove 
that Grad-CAM can help to improve the interpretability of 
these deep networks irrespective of the used architecture 
or type. This work also extends Grad-CAM, demonstrating 
its capability to offer insights of model processes toward 
achieving better and more interpretable AI models.

Keywords: Grad-CAM; ViTs; model decision; visual-
ization of models; deep learning

1. Introduction
State-of-the-art models such as Deep Neural Net-
works (DNNs) as of now have greatly revolutionized 
computer vision by solving challenges such as im-
age classification, object detection & segmentation. 
However, within the framework of these models, it 
is possible to achieve a result that is beyond human 

capabilities; at the same time, their work is often 
simply incomprehensible. It also becomes the “black 
box” issue, and this is a problem in such cases as 
medical diagnosis or an autonomous vehicle, where 
it is important to know how the model comes to the 
given conclusion [1]. Convolutional Neural Net-
works (CNNs) have been seen as the most popular 
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models in these advancements; the VGG as well as the 
ResNet models. VGG incorporated deeper layers [2] so as 
to enhance the image classification while ResNet provided 
with an option to add more layers and get rid of the van-
ishing gradient problem by engaging shortcut connections. 
To this end, Vision Transformers (ViTs) are of a relatively 
new era that employ self-attention mechanisms for captur-
ing local and global dependencies in images [3]. Nonethe-
less, it was seen that ViTs outperform CNNs in efficiency 
and accuracy; however, ViTs are much more demanding 
in terms of data and computations than CNNs and add to 
the problem of model interpretability. As models get more 
complicated, and as we build more complicated models, 
the need for interpretability and accountability only be-
comes much more paramount, leading to the call for tools 
that can explain how such models come up with their de-
cisions [4].
However, interpretability challenges have manifested and 
Grad-CAM (Gradient-weighted Class Activation Map-
ping) has been developed to respond to those challenges. 
Grad-CAM produces heatmaps with the areas of the im-
age which are the most significant to the model’s predic-
tion; this visualizes the gradients happening in the last 
convolutional layer to help the analyst understand how 
the decision was made [5]. However, as is shown below, 
Grad-CAM has some limitations and is best used in tasks 
such as classification, detection, and medical imaging. 
Moreover, it can have different performance results on dif-
ferent architectures, which indicates not only the need for 
deeper exploration of the ideas. Our study concerns Grad-
CAM utilization comparison across different architectures 
of deep learning, including CNNs, Vision Transformers, 
and Swin Transformers. Therefore, by comparing Grad-
CAM’s interaction with these models systematically, we 
wish to learn more about its advantages and disadvantages 
with regard to giving visual explanations [6].

In this work, we explore the visualization outputs of Grad-
CAM for different models VGG, ResNet, and ViTs. The 
objectives of the experiments are to investigate how Grad-
CAM highlights relevant image parts and to investigate 
the manner in which these models perceive images. CNNs 
for instance apply feature extraction in apace hierarchy 
where the initial layers are responsible for detecting edges 
and textures while the deeper ones identify the objects. 
As for Vision Transformers, the images are instead divid-
ed into patches, and self-attention cues are utilized; thus, 
Grad-CAM may recognize dissimilar important areas. In 
this way, we evaluate Grad-CAM’s effectiveness in im-
proving model explainability across diverse architecture 
types. This paper shows how Grad-CAM works with mod-
els of different architectures and the research can identify 
possible areas for improvement in Grad-CAM visualiza-
tion [7,8,9]. This work is useful to shed more light on the 
actual methods of applying Grad-CAM to tasks with more 
composite input data, including multi-modal or temporal 
data. Subsequently, the present research contributes to en-
hancing understanding on the applicability of Grad-CAM 
on or across different architectures of models.

2. Method

2.1 Network Models
In our study, we focused on three distinct deep learning ar-
chitectures: Most popular architectures are CNN, Vits, and 
Swin Transformers (Fig.1). These models were selected 
to understand and compare the effectiveness of the Grad-
CAM technique in different types of the neural networks, 
while each of them has different strategies for processing 
the images. In this work, we compare these models to 
offer a more complete picture of Grad-CAM’s versatility 
and efficacy across different architectural styles.

Fig. 1. Swin Transformer architecture [10].
CNNs are regarded as a staple in today’s computer vision. 
They work through a set of filters to input images with 

a series of convolutions and extract these features at dif-
ferent layers in such a hierarchy. The initial layers detect 
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simple features such as edges and texture while the later 
layers detect high level features like shape and objects. 
CNNs, especially VGG, are basic and efficient; thus, they 
are suitable in comparing Grad-CAM on visual interpreta-
tion [8]. ViTs, thus, are a marked departure from the tradi-
tional convolutional way of approaching things. The ViTs 
employ the transformer architecture that has been used for 
natural language processing and then apply it to the image 
input. This architecture splits an image into patches and 
each patch is transformed into a token and the architecture 
models the interactions between token using self attention 
mechanisms. In our work, ViTs were chosen to understand 
Grad-CAM in architectures that use attention and are not 
based on convolution operations [4]. Swin Transformers 
evolutionized the ViT approach to image information 
processing, thus providing a more sophisticated means of 
operation. Swin Transformers organise filters hierarchical-
ly as well as apply sliding windows that are shifted with 
the scale which helps the model to gain both the local and 
global information at scale. This way Swin Transformers 
can reach very high performance on different vision tasks, 
even surpassing the CNNs or the basic ViT. We included 
Swin Transformers into our consideration in order to in-
vestigate whether Grad-CAM could produce semantically 
meaningful visualizations in the setting which encompass-
es the features of both CNNs and ViTs [9].

2.2 Grad-CAM Theory and Principles
Grad-CAM is an effective method for producing visual 
explanations of deep neural network predictions in the 
cases of CNNs. The concept of Grad-CAM is based on the 
notion of gradient of the target class with respect to the 
features in the last convolutional layer to determine the 
most important regions in an input image that has contrib-
uted to the final prediction made by the model. The pro-

cess involves passing an input image through the model to 
get a forward pass while generating class scores for a par-
ticular task, like image classification or captioning. Grad-
CAM, for a specific class of interest, sets the gradient of 
the remaining classes to zero while the gradient for the 
target class is set to one. These gradients are then passed 
back through the model, specifically to the convolutional 
layers, and quantifies the influence of each feature map 
with regard to the target class.
From mathematical perspective, Grad-CAM calculates 
a linear combination of the feature maps having weights 
normalized out of gradients passed back to the feature 
map (Fig.2). This makes sure that only influential features 
dominate the space. The obtained class-wise heatmap, 
that focuses only to the parts of the image most important 
for the class of interest, represents areas that have signif-
icant participation in the model decision-making process, 
represented by high intensity values. The heatmap is then 
overlaid on the input image and thus allowed the model to 
provide a much more easily interpretable output. From the 
diagram it is clear that Grad-CAM is general and can be 
used for multiple tasks such as image classification, image 
captioning, and visual question answering (VQA). It can 
also thus be generalized to architectures other than CNNs 
as shown in Its case in models with convolutional and 
task-specific layers where there are several interplays like 
with the recurrent neural networks (RNNs). In addition, 
the Guided Grad-CAM variant employs guided back-
propagation for the refinement of the visualization. When 
Grad-CAM is combined with guided backpropagation the 
much clearer, more detailed coarse localization map is 
obtained, which reveal both spatial and concept-specific 
features improving interpretability of the internal repre-
sentations of the model.

Fig. 2. Grad-CAM overview [11].
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2.3 Target Layer Selection
This is the reason why Grad-CAM visualizations largely 
depend on choosing the target layer inside network mod-
els. This layer is crucial for defining the resolution and 
usefulness of heatmaps produced, as their determinants 
affect the further comprehensibility of model’s decision 
making. Due to the differences in structures between the 
CNN model and the two transformer models namely ViT 
and Swin Transformer, we decided to chose certain layers 
to increase the quality of the Grad-CAM images.
For CNNs, it was decided that the last convolutional layer 
is the most appropriate for investigation. In Neurons such 
as in the VGG network that contains multiple of convo-
lutional layers connected with fully connected layers, the 
final convolutional layer is ideal for Grad-CAM. This 
layer extracts more general-level characteristics while 
benefiting from the spatial details, which are necessary to 
determine which areas of an entry image are involved in a 
model’s decision-making process. Through concentration 
upon this layer, the heatmaps generated are specific and 
retain their well-understood semantic value and are thus 
so beneficial in providing an understanding of the model’s 
interpretative function [12]. In case of ViTs, target layer 
was set as the output of Transformer Block. ViTs on the 
other hand work with the images in the form of sequences 
of patches where every patch is handled like an individual 
token in NLP. The final appreciation of the image before 
classification is formed here in the Transformer Block 
which combines global context and category details from 
multi head self attention and feed forward layers. This 
makes it an ideal candidate for Grad-CAM since it gives 
the interpreter an insight of the model’s workings at a time 
when important decisions are being made [4]. In the Swin 
Transformer, the final stage product was chosen as the 
target layer. Swin Transformers use hierarchical structure 
with shifted windows to extract information from imagery 
in multiple resolutions. The last stage integrates both the 
local and the global data, so it is the best stage to select 
if you need to make Grad-CAM heatmaps. In this way, 
we focused on this stage so that the heatmaps capture the 
most important aspects at different scales, providing a de-
tailed picture of the model’s decisions [13].

3. Experiments and Results

3.1 Network Settings
MobileNetV3, VGG16, ResNet34, RegNet_Y_800MF, 
and EfficientNet_B0--which were the CNN models used 
and were all pretrained on the large-scale ImageNet data-
set Grad-CAM was originally developed as a method for 

visualizing convolutional neural network features. We 
use its activation maps to form an approximate indication 
of where an image is being looked at by a trained net-
work Invisalign cards serve another means of bringing 
MathML formulas together with the compiled preferably 
human-readable form It’s possible to extract the import-
ant visualizations from CNN models because their final 
feature map layer is purpose-designed to operate on photo 
features. For example, resnet34 has a layer called “layer4” 
that produces this information and EfficientNet_B0 has a 
feature set labeled “features”. This information is critical 
for creating meaningful class-discriminative localization 
maps that highlight those parts of the image most influen-
tial to what the model has output. By using such methods 
of storage standard preprocessing techniques, including 
image resizing and normalization, can ensure consistency 
with the models’ predicted inputs, leading to reliable visu-
alization outputs.
The ViT differs from CNNs in that it considers an image 
itself one sequence of patches, pictorially processing each 
as a token through self-attention machinery to capture 
long-range dependencies innately. By using the ViT-Base 
model and a patch size of 16, we could achieve an input 
resolution in Hue 224x224.Normalization is one of sever-
al crucial steps in attention-based feature extraction. With 
Grad-CAM integration, our focus returns to the last block 
and layer of `norm1’, which has thus been targeted. This 
ensures better localization through CNN. Since Grad-
CAM’s undefined jigsaw does not quite fit into the ViT’s 
mental images, we introduced a custom transformation 
called `ReshapeTransform’ to fashion perfectly regular 
CNN feature maps. This allowed us to generate maps for 
class-discriminative localization in just a few short lines 
of code.Finally, we also combined Grad-CAM with the 
Swin Transformer, which integrates a hierarchical struc-
ture and shifted window attention. We employed the Swin-
Base architecture and a patch size of 4 with window size 
of 7. For Grad-CAM we selected the norm layer’s size, 
insuring we would have an accurate feature extraction 
stage before classification.A similar approach was used to 
reshape Swin’s outputs as for the ViT, enabling us to look 
at any one point in the model’s decision-making process.
This combination of CNNs, ViT, and Swin Transformers 
with Grad-CAM allows us to visualize and interpret the 
internal workings of different model architectures, demon-
strating how each network’s attention mechanism affects 
classification outcomes. The targeted layers for each mod-
el play key roles in feature extraction, and the integration 
with Grad-CAM provides valuable insights into the re-
gions of the input images that most strongly influence the 
models’ predictions.
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3.2 Datasets and Evaluation Metrics
To conduct this experiment, we employed the ImageN-
et-1000 dataset. It is a widely used benchmark in image 
classification, containing over 1.2 million training images 
and 50,000 validation images across 1,000 categories. 
With its comprehensive variety, Grad-cam can offer a 
model attention view covering multiple classes and fine-
grained analysis of such views. All images were prepro-
cessed to ensure consistency, including normalization 
and size scaling which correspond to protocols used in 
training of ImageNet-trained models. This guarantees that 
there is equal treatment of input data between different ar-
chitectures regarding standard deviation or mean of inten-
sities which could affect our comparisons adversely. We 
evaluate our Comprehensibility Metric primarily through 
qualitative means, stressing the lucidity Derived from 
Grad-CAM Pientudes. By covering the original picture 
with these heatmaps, we can assess visually whether high-
lighted areas correspond to a class of interest. Different 
models each display distinct reasoning processes and this 
approach in computing Grad-CAM bacterial landmines 
provides new insights for understanding the thinking be-
hind them.

3.3 Training and Results

3.3.1 Iterative results analysis

The following is a method of processing images using a 
masked autoencoder (MAE). A Whole image is separat-
ed into patches first, a part of which patched with mask. 
Then in patched out patches are  sent through an encoder, 
and output by the encoder is added to those patched with 
mask before this combines with other information from 
the decoder to recreate the original picture. In the course 
of our pretraining experiment, we achieve a loss of 0.03 
after 400 iterations. Even with fewer training iterations 
than those reported in previous research (the original 
number was 2000), we still have good results and this 
indicates to us that the approach works effectively with 
a smaller number. Fig. 3 and Fig.4 present images of 
the results of our MAE approach as it processes images 
through a pretraining experiment. Images from different 
categories in the ImageNet dataset are shown in each row; 
this demonstrates MAE ‘s capacity to deal with the task of 
pretraining images crossing many kinds and types that are 
probably quite dissimilar to one another. Columns repre-
sent the changes in image reconstruction as a function of 
different numbers of sentences. They show how the model 
learns to restore the portions of input images blanked out 
by mask at various stages during training. The images in 
these rows show how the model learns to reconstruct the 
parts of the input images that are masked out as training 
continues but at different times.

　　

Fig. 3. Effect after 67 and 206 iterations.(Photo/Picture credit : Original)
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Fig. 4. Effect after 302 and 399 iterations.(Photo/Picture credit : Original)
3.3.2 The impact of masking ratio

We standardized data transformations to guarantee con-
sistency and comparability of results across models. 
Meanwhile, adjustments were made according to the 
specifics of each model’s parameters. Learning rates, 
batch sizes and dropout rates are important for optimizing 
performance while minimizing overfitting. In this regard, 

hyperparameter search has been performed to find best 
settings not only once but hundreds of times (Fig.5). For 
models like ViTs and Swin Transformers, adjustments like 
LayerNorm fine-tuning or adding dropout were vital to 
stabilizing training. For instance the former improved the 
flow of gradients and at the same time reduced reliance on 
any particular features.

Fig. 5. The impact of masking ratio (Photo/Picture credit : Original).
Thanks to its mask ratio of 0.75, the method was highly 
successful. On the one hand, because this figure strikes 

a balance between forcing the model to learn meaning-
ful representations from unmasked patches and leaving 
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enough information for a successful reconstruction. The 
higher mask ratio likely encourages the model to focus 
more on global and structural features rather than lo-
calized or trivial details. This abstraction under duress, 
results in an improvement that helps the model to gen-
eralise. It works well in both pretraining stages and in 
subsequent tasks. During the second round of fine-tuning, 
adjustments to hyperparameters such as reducing the 
LayerNorm learning rate from 0.05 to 0.001 and adding a 
dropout rate of 0.2 further improved performance (Fig.6). 
The decrease in the learning rate for LayerNorm helped to 

prevent instability in the normalization process, but par-
ticularly in the more depth layers where small changes of 
normalization parameters can produce large fluctuations 
on gradients. This sort of stability is particularly important 
for models like the ViT and Swin, which have attention 
mechanisms that are highly sensitive to minor variations 
in input distributions. The introduction of dropout was 
another regularisation touch. Added at 0.2, it takes the risk 
out of overfitting by making it more likely that any given 
neuron or pattern isn’t too much relied upon during train-
ing.

　　

Fig. 6. The impact of Fine Tuning (Photo/Picture credit : Original).
3.3.3 The visualization of models

Three ablation experiments were designed to compare the 
performance of CNN, ViT, and Swin models in visualiza-
tion tasks. The first experiment was completed by different 
models and shows Grad-CAM heatmaps for the class “cat. 
The second experiment compares heatmaps of both the 
class “cat” and the class “dog,” ViT and ResNet. The third 

experiment set up this example that we discuss in the next 
section by using heatmaps based on ResNet have been ar-
ranged for many classes including “cat.” By analyzing the 
heatmaps, we found that different models focus on distinct 
parts of an image depending in this example which class 
is being depicted at the time. This strong evidence for the 
interpretability of deep neural networks can be seen from 
Fig.7, Fig.8, Fig.9 and Fig.10.

　　

Fig. 7. CNN-RESNET34 (Photo/Picture credit : Original).
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Fig. 8. VGG-16.(Photo/Picture credit : Original)

　　

Fig. 9. VGG (Photo/Picture credit : Original)

　　

Fig. 10. Swin (Photo/Picture credit : Original)
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4. Conclusion
We evaluated three popular deep learning architectures 
– CNNs, Vits, and Swin Transformers – in detail by em-
ploying Grad-CAM to visualize their decision-making 
processes on image classification tasks. Our experiments 
showed that using class-discriminative heatmaps to ob-
tain where each model paid attention in an input image, 
we successfully compared their attention models. We 
demonstrate through an experimental analysis that Grad-
CAM works effectively to make these models easy to 
interpret. Different attention modes among architectures 
point up their deep strengths and shallow weaknesses in 
specific. These findings underscore that Grad-CAM is a 
useful mechanism for increasing the clarity of deep learn-
ing, which is especially necessary in cases if explication 
brings indispensable benefits. Future work might extend 
successful demonstration of Grad-CAM onto emerging 
architectures or fast-expanding research areas such as bio-
medicine, and highly regulated system classes where trust 
in AI is key. Further exploration into hybrid models and 
more adaptive visualization techniques will provide even 
greater insight into model behavior, fostering better trans-
parency in future AI systems.
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