
ISSN 2959-6157

Dean&Francis

1996

Abstract:
Microelectronics and integrated circuit technologies are
undergoing continuous evolution, resulting in increasingly
powerful processor chips. Presently, the predominant
processors available in the market are based on the X86
and ARM architectures, both of which are proprietary and
associated with substantial patent licensing constraints.
In contrast, RISC-V is an entirely open-source instruction
set architecture that is accessible to anyone. Given
the diverse, personalized, and differentiated demands
within the chip industry, the exploration and utilization
of the RISC-V instruction set for processor design hold
significant importance.This study first examines the
RISC-V instruction set architecture, focusing on its
instructional characteristics and format. Subsequently, a
three-stage pipeline design is implemented based on the
tinyriscv framework, incorporating resource optimizations.
The study also addresses the pipeline conflict issues and
proposes a partial solution. Finally, the pipeline design’s
efficacy and the processor core’s fundamental instructions
are validated through ModelSim simulations and the
development of test programs.

Keywords: RISC-V; processor design; FPGA

1. Introduction
Integrated circuits are employed in a multitude of
fields, including high-performance computing, con-
sumer electronics, and wireless communications. The
growing demand for data processing and the increas-
ingly complex communications equipment functions
on the chip’s integration degree have led to more
stringent requirements. Over the past decade, the rap-
id advancement of semiconductor processing tech-
nology has enabled a single chip to accommodate an
increasing number of body tubes, depending on the
required functionality. An integrated circuit chip can
now contain anywhere between 10 and 100,000 body

tubes, which has not only facilitated the continued
evolution of integrated circuit design but has also
prompted a surge in innovation within the broader
system structure design domain [1].
The evolution of processor chips is inextricably
linked to the advancement of the instruction set
architecture. In the early days of computing, there
were fewer computer instructions and computer pro-
grams were simpler, with fewer types of operations
to perform. At that time, the prevailing trend was
towards the development of Complex Instruction
Set Computers (CISC) [2], which aimed to achieve
the simplicity of software programming through the
use of complex instruction operations and complex

Tinyriscv-based Processor Core Design

Jingbo gao1, *

1School of Information Science and
Engineering, Shandong University,
Qingdao, China
*Corresponding author:
202200120157@mail.sdu.edu.cn

1

Dean&Francis

1997

JIngBO gAO

hardware implementations, as well as the reduction of
registers. The implementation of a single CISC instruction
that performs multiple operations did, however, result in
an improvement in the efficiency of software program-
ming at that time. The advancement of Moore’s law has
led to a surge in the demand for sophisticated chip func-
tions, which has in turn increased the complexity of the
design. The instruction set has also undergone a process
of derivation, necessitating the performance of an ever-in-
creasing number of operations. Consequently, the com-
plexity of the instructions has risen. The shortcomings of
the CISC are gradually revealed. The average number of
clock cycles required by the instruction is considerable,
and the CISC instruction is complex and irregular, making
it challenging to insert into the pipeline. This results in a
long clock cycle, which in turn makes the execution of
the processor very difficult. Consequently, the execution
time of the processor is considerable, and it is challenging
to enhance its speed. Furthermore, due to the necessity of
implementing numerous intricate operations, the hardware
implementation is inherently complex, necessitating the
allocation of additional hardware resources and chip area,
along with an increase in manufacturing time and cost for
the chip [3].
In response to the limitations of CISC, the Reduced In-
struction Set Computer (RISC) was developed. Unlike
CISC, RISC has a more streamlined set of instructions,
simpler hardware implementations, a larger number of
registers, and a greater number of lines of software pro-
gram code. The pursuit of high performance in processor
design is based on the acceleration of recurring events and
the minimisation of the length of time taken to perform
these events. The RISC design, following the insertion
of the pipeline, can be executed every clock cycle of an
instruction, with the pipeline partitioned to insert it into
the critical path, resulting in a very short clock cycle. In
accordance with the processor performance formula for
comparing RISC and CISC, despite the greater number
of instruction lines in RISC software, the CPI and clock
cycle time are significantly smaller than CISC, resulting
in a reduced actual processor execution time. These ad-
vantages have led to an increasing interest and acceptance
of RISC, which has subsequently become the dominant
approach in instruction set development.
Furthermore, processors and system-on-chips are con-
fronted with an expanding array of novel challenges as
technology advances and market demands evolve. By
optimising the design of the processor core and introduc-
ing extended instruction sets, it is possible to meet the
market requirements for higher performance, lower power
consumption, smaller size, and a lower cost. Such optimi-
sations can assist RISC-V processors in more effectively

competing and responding to demand in disparate markets
and applications. It is therefore of great academic and
practical significance to conduct research on the mature
RISC-V processor architecture, to optimise the proces-
sor core design and to investigate how to implement an
extended instruction set under the RISC-V architecture
in order to meet the acceleration needs of specific scenar-
ios. To enhance the versatility and flexibility of RISC-V
processors, align them with the evolving market demands
for processors and system-on-chips, and facilitate chip au-
tonomy and control, controllable has significant academic
and practical implications [4].
This paper presents a study of the RISC-V instruction set
architecture and a design of a three-stage pipeline proces-
sor core based on tinyriscv. The conflict problem inherent
to the three-stage pipeline is analysed, and a targeted
partial solution is proposed to divide the processor core
modules and optimise the resources to some extent. The
designed processor core was then validated through the
use of Modelsim simulation and the manual creation of
test programs based on the official test set developed by
the RISC-V community.

2. RISC-V Instruction Set

2.1 RISC-V Instruction Set Features
The regularity of the RISC-V architecture is reflected in
the coding style of the instruction set[5].The RISC-V in-
struction set is available in a number of standard formats,
including 16-bit, 32-bit, 64-bit, and 128-bit. The 16-bit
and 32-bit instruction sets are well-suited for embedded
processors, whereas the 64-bit and 128-bit instruction sets
are more appropriate for personal computers or servers. In
contrast to traditional instruction set architectures, such as
X86 and ARM, the RISC-V instruction set is characterised
by an extensible and modular structure.
RISC-V employs a modular approach, wherein each in-
struction set module is represented by a letter of the alpha-
bet. The basic integer instruction, represented by the letter
“I,” serves as the foundational instruction set for users to
extend. The extended instructions include the multiply-di-
vide instruction set (M) and the atomic instruction set.
The single-precision floating-point instruction set (F), the
double-precision floating-point instruction set (D), and the
compression instruction set (C) are also available. Users
may select different extended instruction sets to meet the
specific requirements of their applications. To illustrate,
in scenarios where a smaller area and lower power are
required for embedded applications, the RV32IC instruc-
tion set may be selected. Conversely, in scenarios where
high-performance is desired for application systems, the

2

Dean&Francis

1998

ISSN 2959-6157

RV32IMFDC instruction set may be selected. It can be
seen that the selection of more extended instruction mod-
ules will result in a more comprehensive processor, which
will in turn lead to enhanced performance [6]. This paper

implements a subset of the RV32I instruction set, com-
prising 32-bit instructions in four basic formats (R, I, S, U)
and two variants (SB, UJ). The RV32I instruction coding
format is illustrated in Figure 1.

Fig.1 Basic Instruction Formats of RISC-V
The RISC-V ISA keeps the source (rs1 and rs2) and desti-
nation (rd) registers at the same position in all formats to
simplify decoding. Immediates are always sign-extended,
and are generally packed towards the leftmost available
bits in the instruction and have been allocated to reduce
hardware complexity. In particular, the sign bit for all
immediates is always in bit 31 of the instruction to speed
sign-extension circuitry [5].

3. RISC-V Processor

3.1 Architecture

3.1.1 Three-stage-pipeline

Pipeline is a technique that enables the overlapping execu-
tion of multiple instructions and constitutes a fundamen-
tal element of processor microarchitecture. The pipeline
technique enhances system performance by augmenting
the throughput of the system, thereby reducing the time
required to complete an entire task. It does not, however,
diminish the execution time of individual instructions [6].
The tinyriscv processor employs a straightforward three-
stage pipeline architecture comprising fetch, decode, and
execute modules. Figure 2 illustrates the three-stage pipe-
line designed in this paper, with reference to the tinyriscv.

Fig. 2 Three-stage pipeline structure

3

Dean&Francis

1999

JIngBO gAO

Throughout the pipeline stage, the program counter is
employed to generate the value of pc_reg, which is uti-
lised as the address signal of the program memory. Given
that tinyriscv is a three-stage pipeline structure, the CPU
performs finger fetching and decoding. The value of pc_
reg is therefore simultaneously coded, and executed. At
this moment, the value of pc_reg represents the address of
the instruction being executed. Consequently, the address
of the instruction being finger fetched is pc_reg+8, and
the address of the instruction being decoded is pc_reg+4.
The address of the instruction to be decoded is pc_reg+4.
In the event of an interrupt, the current value of pc_reg
is stored directly. Upon the conclusion of the interrupt, if
the program continues to return to the stored address of
pc_reg, the interrupt will be re-executed, resulting in the
program entering a dead loop. To circumvent this issue,
the software implements a modification to the return ad-
dress of the interrupt, whereby the current value of pc_rcg
is augmented by four and the current address is bypassed.
The mepc register is employed to store the return address
of the interrupt, and upon the conclusion of the response,
four is appended to the return address and transmitted
back to the mepc register.
The tinyriscv does not possess a dedicated module for
finger-fetching; rather, this operation is integrated into
the decoding process. The output of the program counter
(pc_reg) is connected to the input of the program mem-
ory (sim_ram). Given that the reading of sim_ram is a
combinational logic operation, the instruction output from
sim_ram is transferred to the input of the module situated
between the finger fetch and decode stages, namely if_id,
prior to the occurrence of each clock pulse. The module
situated between the stages of fetching and decoding,
designated if_id, is responsible for transmitting the in-
structions generated by sim_ram to the decoding module,
designated id, following the occurrence of a clock pulse.
Given that the computer is unable to discern which in-
struction is currently being fetched, it is essential for the
module to be prepared for any instruction and to convey
all potentially beneficial information throughout the pipe-
line.
The decoder module id is a combinational logic circuit
that decodes the instructions transferred from the module
id. Once decoding is complete, a signal is generated in-
dicating whether the register is to be read or written. As
the registers are read asynchronously, the corresponding
register data can be obtained immediately upon sending
the read register signal. This data is transmitted together
with the write register signal to the execution module ex,
situated between decoding and execution. The module
then transmits the write register signal and register data to
the execution module ex after a beat.

The execution module ex is also a combinational logic
circuit. In accordance with the decoding information
transferred from the ID module, the corresponding opera-
tion is executed. For instance, the add instruction executes
the addition operation, the SUB instruction executes the
subtraction operation, and if it is a memory access instruc-
tion, it reads and writes the memory in an asynchronous
manner. Subsequently, the register write signal, the regis-
ter address signal and the register data signal are conveyed
to the general-purpose register group, designated as regs,
while the memory write signal, the memory address signal
and the memory data signal are transferred to the RIB bus,
which assigns the module to be accessed.
The tinyriscv processor lacks a store-and-write-back
stage; instead, the store-and-write operation is situated
within the execution module. Following the result of the
execution, the data is written back to the registers or mem-
ory at the subsequent rising edge of the clock.
In the modern era, the number of CPU pipeline stages
has surpassed three, yet tinyriscv maintains a three-stage
structure. This is primarily due to the simplicity of the
three-stage pipeline, which is straightforward to imple-
ment in hardware. Furthermore, the three-stage sequential
launch pipeline allows the processor to consider power
consumption and performance simultaneously, thereby
meeting the design requirements while also prioritising
low-power consumption[7].
3.1.2 Pipeline hazards

The presence of overlapping instructions within a pipe-
line can result in the emergence of pipeline data hazards,
which are characterised by their correlation with one
another. There are three principal categories of hazard.
A structural hazard arises when a component is request-
ed by more than one instruction, resulting in insufficient
hardware resources in the pipeline. A data hazard can be
caused by an instruction requiring an operand that is the
result of a write-back of the instruction that precedes it
[8]. Finally, a control hazard can be caused by a branch or
jump instruction that changes the PC value of the instruc-
tion address, thereby determining the flow of program
execution based on the result of the previous instruction.
1) Structural hazards and solution measures
In a Von Neumann architecture, instructions and data may
be subject to structural hazards due to their sharing of a
common memory [3]. The processor core designed in this
paper employs a Harvard architecture to circumvent this
issue. By separating the storage of instructions and data,
each memory is addressed and accessed independently,
thereby meeting the requirements of a processor that is
capable of parallelised data processing.
2) Data hazards and solution measures

4

Dean&Francis

2000

ISSN 2959-6157

In consideration of data hazards, it can be observed that
the processor cores designed in this paper are single scalar
processor cores with sequential execution. Consequently,
the data hazards that arise are limited to those of the write-
after-read variety. In accordance with the aforementioned
three-level pipeline partitioning of the processor core,
only adjacent instruction data hazard situations are to be
expected [9]. An adjacent instruction data hazard refers to
a scenario in which two instructions, designated A and B,
are situated in a sequential order, with A preceding B. In
this configuration, B is responsible for reading an operand
register, while A is tasked with writing the destination
register. However, if B accesses the operand and A is still
in the third stage of the pipeline, it may not have stored
the most recent results in the destination register. Conse-
quently, the value of the registers read by B may not be
the most up-to-date.
The occurrence of data hazards can be identified during
the decoding phase. In the decode phase, the number of all
registers to be utilised in the instruction is determined. In
the event that the register to be read in the decode phase
is identical to the register to be written in the preceding
instruction, a data hazard is identified. This paper propos-
es a solution to the aforementioned problem by verifying
whether the number of the register to be read subsequent
to the instruction is identical to the number of the register
to be written initially. In the event of a match, the data to
be written to the register is simultaneously written to the
register to be read subsequent to the instruction, thereby
circumventing the intermediate process of storing and
subsequently reading.
3) Control hazards and solution measures
The occurrence of control hazards in the pipeline is at-
tributable to the execution of transfer class instructions by
the program. Transfer class instructions, including uncon-

ditional transfers, conditional transfers, subroutine calls,
and interrupts, which are branching instructions, have the
potential to alter the direction of the program during exe-
cution, thereby resulting in pipeline breaks. In this paper,
the resolution of control hazards entails the pausing of the
pipeline, a measure that has the consequence of signifi-
cantly reducing the efficiency of the pipeline and increas-
ing the average number of clock cycles consumed by the
instruction CPI.
Branch delay slots and dynamic branch prediction are
employed in numerous processor architectures to mitigate
pipeline branching losses and address control hazards.
However, the utilisation of branch delay slots can render
hardware design intricate and unwieldy, and software pro-
gramming complex and challenging to comprehend. Fur-
thermore, in practical software programs, it is challenging
to identify instructions that are not influenced by branch-
ing outcomes and suitable for placement in delay slots.
The dynamic branch prediction approach necessitates
greater hardware resource utilisation and is more suited to
high-performance superscalar processors.

3.2 Module Division and Design

3.2.1 Finger fetch module

In this context, the term ‘finger fetch module’ is used to
refer to both the pc_reg module and the if_id module as a
single entity. The function of the finger fetch module is to
provide the address value of the instruction and the ma-
chine code of the instruction, retrieved from the instruc-
tion memory at the precise moment in time defined by the
system clock, for subsequent decoding by the next stage
of the pipeline. The design of the finger fetch module is
illustrated in Figure 3.

Fig.3 Finger fetch module

5

Dean&Francis

2001

JIngBO gAO

3.2.2 Decoding module

The decoding module generates the corresponding control
information in accordance with the type of instruction,

reads the value of the source operand register within the
instruction, and generates the immediate number [10]. The
design of the decoding module is illustrated in Figure 4.

Fig.4 Decoding module
3.2.3 Execution Module

The execution module is tasked with determining the
success or failure of the branch transfer, selecting two
operands to participate in the operation, and obtaining the

result of the operation. The result of this operation can
be the destination address of the branch transfer, the data
written to the destination register, or the address of the
memory access, depending on the control signal. The de-
sign of the execution module is illustrated in Figure 5.

Fig.5 Execution module

3.3 Resource Optimisation
In the case of the ex module, it is typical for a number of
logic gates, including those of the AND gate, the OR gate
and the NOT gate, to be reused internally. As a result, it
is possible to extract the logic gates and design a separate
ALU module to be called during the operations in the ex

module.
The specific method is to declare the result variables of
the addition operation, the and operation, the different-or
operation, the or operation, the left-shift operation, the
right-shift operation, and the calculation of the address
unit in advance in the ALU part. Subsequently, the assign
statement is used to assign them with a logical operation.

6

Dean&Francis

2002

ISSN 2959-6157

In this manner, during the execution phase, upon the issu-
ance of the corresponding instruction from the decoding
module, the result variable previously declared can be
directly assigned to rd_data_o, thereby enabling the rd
output data to directly invoke the calculated result within
the ALU. This approach reduces the number of logic gates
required in the ex module.
The utilisation of resources was observed using Quartus,
with the selected device identified as EP4CE15F23C8.
Prior to optimisation, a total of 3091 logic gates were em-
ployed. Following optimisation, the resources accounted
for 3041 logical gates used.

4. Simulation Results
The limitation of pipeline size precludes the implementa-
tion of all basic instructions of RISC-V in this processor.
The implemented instructions are: add, addi, andi, auipc,
beq, bge, bgeu, blt, bltu, bne, jal, jalr, lui, or, ori, simple,
sll.

4.1 Pipeline Validation
The design of the three-stage pipeline of this processor
core and the implementation of each module have been
previously described. In order to ascertain the correctness
of the implementation, the processor core must be veri-
fied. Verification is the process of ensuring that the design
implementation of the chip meets the expectations set out
in the pre-silicon stage. It is the primary method of guar-
anteeing the correct functioning of the chip and reducing
the risk of the chip’s functionality being compromised
during the manufacturing process [3].
In order to check that the structure of the three-stage pipe-
line is correctly constructed, it is necessary to observe the
running waveforms using Modelsim software simulation
and to trace the execution of the instructions in each clock
cycle.
MOV x27,12’d 38
MOV x28,12’d 54
ADD x29,x28 x27
The following is an example to illustrate the execution of
the instruction in the pipeline. Figure 6 shows the results

Fig.6 Waveform Simulation Results
The initial value of the pc register is 0x00. It can be ob-
served that the value of the PC register progresses through
0x04, 0x08 and 0x0C in the final several clock cycles.
This indicates that three instructions are read and continu-
ously sent to the decoder module. Following decoding, the
values of reg1_rdata_o and reg2_rdata_o in the final clock
cycles are 32’h00000026 and 32’h00000036, respectively.
The value of the register then successively goes through
32’h00000026, 32’h00000036, 32’h0000005c, which are
the decimal numbers 38, 54, 92. This indicates that the ex-
ecution module successfully added the two numbers and
that the three-stage pipeline was correctly implemented.

4.2 riscv_test Set
The RISC-V community has developed an official test set
[11] that provides tests for each of the different RISC-V

instruction variants. unit tests for each instruction are pro-
vided in riscv-tests. Below are some of the disassembled
snippets from the add test cases:
000004cc <test_38>:
4cc: 01000093 li ra,16
4d0: 01e00113 li sp,30
4d4: 00208033 add zero,ra,sp
4d8: 00000e93 li t4,0
4dc: 02600193 li gp,38
4e0: 01d01463 bne zero,t4,4e8 <fail>
4e4: 00301863 bne zero,gp,4f4 <pass>
000004e8 <fail>:
4e8: 00100d13 li s10,1
4ec: 00000d93 li s11,0
000004f4 <pass>:
4f4: 00100d13 li s10,1

7

Dean&Francis

2003

JIngBO gAO

4f8: 00100d93 li s11,1
Here the programme will check whether the addition of
two numbers is the expected result or not, and jump to the
fail or pass section accordingly. That is, after the unit test
is performed on the instruction, if the instruction is exe-
cuted normally, it will eventually jump to the pass section
and the values of registers s10 and s11 will be set to 1;
otherwise, it will jump to the fail section and the values
of registers s10 and s11 will be set to 1 and 0 respective-
ly. s10 is 1 to indicate that the test is complete, s11 is 1
to indicate that the test is passed, and s11 is 0 to indicate

that the test is not passed. In this way, it is only necessary
to check the values of s10 and s11 to know whether the
unit test has been completed and whether the unit test has
passed.
As it is time-consuming to test the RISC_V basic in-
struction set one by one, and also for the convenience of
observing the test results, this paper writes Python scripts
to automatically test the basic instructions in batch mode.
The result of the execution of each instruction is output as
shown in Figure 7.

Fig.7 Results of python script
As can be seen from the figure, the instructions designed
in this paper have passed the unit tests provided in riscv-
tests for each instruction, verifying that the functions of
each instruction of the designed processor have been real-
ised and the basic processor core design is complete.

5. Discussion
In this paper, the verification of processor cores is done
by manually writing test programs using the riscv_test set,
but not by generating randomly motivated tests. Although
the manually written test program traverses all instruc-
tions, it is difficult to cover the various combinations of
instructions, and the random generation of test stimuli can
be used to traverse all combinations of instructions to en-
sure the completeness of the processor verification.
There are still some areas for improvement and extension
in this paper.
When solving pipeline control hazards, in addition to the
pipeline suspension method adopted in this paper, further

research can be conducted to adopt solution strategies
such as dynamic branch prediction, data relevance check-
ing and garbled write-back, respectively, to improve the
performance of the processor.
The tinyriscv, as a scalar processor, can only decode one
extended instruction at a time, which restricts the instruc-
tion performance, and the subsequent can be based on the
extended instructions. Accelerator portability, the use of
multi-core or multi-threaded main processor architecture
to achieve parallel execution of instructions to improve
computing efficiency.

6. Conclusion
This paper analyses the characteristics of the RISC-V
instruction set architecture, combines the characteristics
of the RISC-V architecture with the performance of the
tinyriscv processor to carry out a certain pipeline data
hazard analysis, and then carries out the design of the
processor core, and after the completion of the design is

8

Dean&Francis

2004

ISSN 2959-6157

appropriately optimised for resources. After designing the
RISC-V processor core, the design of the three-stage pipe-
line was verified by observing the simulation waveforms,
and the basic instructions of the designed processor core
were verified by manually writing the test programs to
achieve the basic functions of the processor core.

References
[1] Kang Songmer,YusufLeblebici,ChulwooKim. CMOS digital
integrated circuits:analysis and design. Electronic Industry
Press,2015.
[2] Wang, C.Y., Zhang, Chunyuan, Shen, L. et al. Computer
Architecture. Beijing: Tsinghua University Press. 2015, 11-53
[3] Peng, Xiaode. Processor core design and SoC implementation
based on RISC-V instruction set. Hunan University, 2022.
[4] Jia S-M. Optimisation of RISC-V processor core design and

implementation of extended instruction set Shandong University,
2023.
[5] Hu Zhenbo. Hands-on teaching you to design CPU
RISC-V processor chapter. Beijing:People’s Posts and
Telecommunications Press,2018:34
[6] Michael J. Flynn, Y.Q. Lu, and C. Zhang. Computer system
design:System on a chip. Mechanical Industry Press,2015.
[7] Shi L. Design and Implementation of Extended Instruction
Microprocessor Based on RISC-V Architecture. Beijing
University of Chemical Technology, 2021.
[8] Jiemin,Zhang Shanfeng. Study and performance optimisation
of a five-stage pipelined RISC-V processor. Microelectronics
and Computing, 2022, 39(03): 78-8
[9] Lei Silei. Do-it-yourself CPU writing. Beijing: Electronic
Industry Press, 2014, 107-180
[10] https://github.com/riscv-software-src/riscv-tests.git

9

