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Abstract:
This article introduces the background of federated 
learning, highlighting its emergence due to the challenges 
posed by data distribution and privacy requirements, 
which limit traditional methods. However, federated 
learning also faces issues such as bandwidth constraints 
and communication power consumption, with existing 
optimization algorithms having their own shortcomings. 
The main focus of this paper is to study federated learning-
related algorithms and optimize federated recommendation 
algorithms to address data privacy and communication 
overhead issues. Two reference algorithms are highlighted: 
the Federated Dynamic Regularizer, which adjusts the local 
loss function dynamically to facilitate the convergence 
of local models toward the global optimum, and the 
Dynamic Federated Distillation, which compresses models 
to minimize communication costs while improving the 
reliability of knowledge and safeguarding privacy. By 
orthogonally combining the codes of both algorithms, 
the paper can effectively leverage their advantages. 
Experiments conducted on three datasets—MovieLens-
1M, MovieLens-100K, and Pinterest—compare the 
optimized algorithm FedDyn-DF with baseline methods 
such as FedAvg and FedProx, as well as the original 
algorithms. The results show that FedDyn-DF outperforms 
these methods, converging faster while also protecting 
privacy. Finally, the paper discusses the limitations of the 
experiments and future research directions.

Keywords: FedDyn Algorithm; Federated Learning; 
Recommender System; Knowledge Distillation.

1. Introduction
In McMahan et al. [1], the authors proposed a con-

cept that utilizes data propagated across multiple 
devices for distributed learning classification tasks 
without resorting to data sharing which called Fed-
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erated Learning (FL). Due to the fact that data is often 
dispersed among different institutions, enterprises, or in-
dividuals in reality, it is difficult to directly integrate and 
share these data for reasons such as commercial competi-
tion, privacy protection, and legal regulations. However, 
the amount of data from a single party is not sufficient to 
train high-quality models. And the snowball of privacy 
protection is gradually increasing, posing challenges to 
traditional centralized machine learning methods. Thus, 
federated learning emerged [2].
However, during the federated learning process, many 
mobile and IoT devices face bandwidth constraints, and 
the energy required for wireless transmission and recep-
tion is greater than that for computation [3]. To tackle 
these challenges, Federated Distillation [4] has been intro-
duced as a federated adaptation of knowledge distillation, 
aimed at lowering the communication overhead associated 
with federated learning. Additionally, data-free knowl-
edge distillation methods have been developed to enhance 
federated learning. Nonetheless, federated distillation still 
faces several issues, particularly in Non-IID scenarios 
where the results may be suboptimal.
Dynamic regularization has been Introduced to address 
the difference between global and local optimal solutions 
[5]. This method adds a penalty term sent by the server to 
the learning objective of each device during each training 
round, in order to make the model of each device con-
verge towards the global optimum. However, the FedDyn 
algorithm requires frequent information exchange between 
the client and server due to the need to construct dynamic 
proxy datasets and extract knowledge. When the model 
is large, it still incurs significant communication costs. 
However, Feddyn and many FL optimization algorithms 
FedAvg [6], FedProx [7], SCAFFOLD [8] have orthogo-

nality [9], and Feddyn is no exception. Combining the two 
algorithms can further improve algorithm efficiency.
A method for distilling federated knowledge based on the 
average of server-side logits has been modified to employ 
focused distillation, enhancing the reliability of knowl-
edge. Additionally, a local differential privacy technique is 
utilized to safeguard this knowledge on the client side [10]. 
Due to the orthogonality between FD and algorithms such 
as Feddyn, this paper combines the improved distillation 
method with FedDyn algorithm, called FedDyn DF, to 
solve the non IID and communication overhead problems 
that originally had biased knowledge in the local model. 
Experiments indicate that it achieves a quicker conver-
gence rate and reduced communication resource demand 
compared to the baseline across three datasets: MovieL-
ens-100K, MovieLens-1M, and Pinterest.

2. Research methods

2.1 Federated Dynamic Regularizer
This section aims to address the issue of:

	 argmin L
θ ?d

 
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 
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Where m represents the number of client devices, and 
each Nk  training instance is contained devices k, the data 
is independently and identically extracted from the joint 
distribution ( , ) x y Pk  of device indices, The experience 

loss of the k-th device is L x yk x y D k(θ θ) = ( , ) k
[ ( ;( , ))] , 

and the neural network’s parameter is θ .
The following is the algorithm flow of Federated Dynamic 
Regularizer:
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Algorithm 1: Federated Dynamic Regularizer

Input: T, θ 0 , α > 0 , ∇ =Lk k(θ 0 ) 0 .
For t = 1,2,...T do
Sample devices Pt ⊆ [m] and transmit θ t−1  to each selected device,

For each device k P∈ t , and in parallel do

Set θ θ θ θ θ θk k k k
0 1 1 2= − ∇ + −argminL L( ) ? , ?( t t− −) α

2
  ,

Set∇ =∇ − −L Lk k k k k(θ θ α θ θt t t t) ( − −1 1) ( ) ,

Transmit device model θk
t  to server,

end for
For each device k P∉ t , and in parallel do

Set θ θk k
t t= −1 ,∇ =∇L Lk k k k(θ θt t) ( −1 ) ,

end for

Set h ht t t t= − −− −1 1α θ θ
m
1 (∑k P k∈ t ) ,

Set θ θt t t= −
 
 
 P

1 1

t

∑k P k∈ t α
h

end for

The risk objective outlined in Algorithm 1 modifies the 
local loss function dynamically, guaranteeing that if the 
local model achieves a consensus point, it corresponds 
with the stagnation point of the global loss. When the lo-
cal device models converge, they move towards the server 
model, with the convergence point identified as the global 
loss’s stagnation point. By observing the update equation 
in the algorithm, a series of relationships can be derived 

when θ θk k
t → ∞ , resulting in ∑

k
∇ →Lk k(θ t ) ∑

k
∇Lk (θ ∞ )

= 0 , which converges to a global risk stagnation point [5].
FedDyn relies on precise minimization, allowing each 
participating device to dynamically adjust its regularizer 
in each round. This method guarantees that the optimal 
model for the regularization loss corresponds with the 
global empirical loss. Across various federated learning 
scenarios, it can be effectively trained, exhibiting strong 
convergence and robustness to device heterogeneity, a 
large number of devices, partial participation, and im-
balanced data. Compared to existing methods such as 
FedAvg, FedProx, and SCAFFOLD, it has advantages in 
communication efficiency, convergence speed, and accu-

racy.

2.2 Dynamic federated distillation
This section is mainly designed based on a proposed dy-
namic federal distillation method [10]. The algorithm’s 
overall architecture utilizes a client-server model based on 
federated learning, where each user participating acts as 
an individual client, uploading only local knowledge (log-
its) to the server during the training process. The process 
consists of several key steps: 1. Initialization: All clients, 
along with the server, initialize their model parameters. 2. 
Client selection and training involve the server choosing 
a subset of clients and sending them signals. After receiv-
ing these signals, the clients conduct multiple rounds of 
training with their local data. 3. Knowledge extraction and 
uploading: Once client training is finished, an ensemble 
operation is executed to extract and upload local knowl-
edge (including features and logits) to the server. 4. Server 
update and feedback: The local knowledge is received by 
the server, which then updates the global model through 
distillation and returns the updated model to the clients. 
5. Steps 2-5 are repeated until the model converges. The 
process diagram is illustrated in Fig.1.
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Fig.1 Dynamic federated distillation algorithm process
Section Ensemble is a knowledge extraction method 
aimed at tackling the problem of randomly constructed 
data potentially failing to guarantee the system’s final con-
vergence, all while improving training efficiency. The op-
eration process can be summarized as the client evaluating 
all project ID (related to the user ID associated with the 
client uk ) with a local model and selecting the K projects 
that have the highest engagement likelihood. Simultane-
ously, generate fake data using random user IDs and K 
random item IDs to calculate the features of the chosen 
user item pairs which are including both synthetic and real 
data, and upload these features and corresponding logits 
to the server. Upon receiving the data, the server shuffles 
it and integrates it to construct the proxy data. The proxy 
data includes the features dr  and logits lr  which are ex-
tracted.
What sets this distillation method apart is that while other 
federated distillation techniques typically utilize the aver-
age of logits, this algorithm employs the logits produced 
by the client model that correspond to the same user as 
input. Consequently, this algorithm enhances reliable 
knowledge and addresses the non-IID issue associated 
with biased local model knowledge, making server-side 
optimization more stable and efficient. And the use of 
methods similar to local differential privacy technology 
has strengthened privacy protection.
Due to the orthogonality between Federated Dynamic 
Regularizer and Conventional Distillation, combining 
Federated Dynamic Regularizer with Dynamic Feder-

ated Distillation can further combine the advantages of 
both algorithms on the basis of the original algorithm. In 
comparison to the baseline and the original algorithm, it 
demonstrates improved convergence and greater robust-
ness to device heterogeneity, partial participation, a sub-
stantial number of devices, and imbalanced data.

3. Experimental results

3.1 datasets
This experiment involves using three public datasets: 
MovieLens-1M, MovieLens-100K, and Pinterest. The two 
datasets of MovieLens are movie rating data, which are 
converted into implicit data (indicated by 0 and 1 to show 
whether users rate items), with each user interacting with 
at least 20 items. Pinterest is an implicit feedback dataset 
utilized for assessing content-based image recommenda-
tions, specifically filtered to include only users who have 
had a minimum of 20 interactions.

3.2 Analysis of experimental results
This article selects FedAvg, FedProx, FedDF, and the 
original algorithm Dynamic federated distortion (FedDyn) 
[10] as baseline methods for comparison. This optimiza-
tion algorithm primarily focuses on the global model’s 
accuracy on the test dataset., leading to the omission of 
some method comparisons that are intended for communi-
cation efficiency and robustness.

Table 1. Recommendation Performance comparing

FedDyn-DF FedDyn FedAvg FedProx FedDF

ML1M HR@10 0.564 0.552 0.547 0.556 0.345
NDCG@10 0.320 0.313 0.297 0.301 0.232

ML100K HR@10 0.598 0.585 0.544 0.557 0.361
NDCG@10 0.379 0.367 0.346 0.359 0.231

Pinterest
HR@10 0.356 0.343 0.338 0.330 0.204
NDCG@10 0.201 0.194 0.179 0.174 0.140

The results of the experiments shown in Table 1 demon-
strate that the optimized FedDyn-DF surpasses both the 

original and baseline algorithms, confirming its effective-
ness in training accurate recommendation models while 
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safeguarding user privacy. It is superior to FedAvg, as Fe-
dAvg struggles with non-IID issues in Federated Recom-
mendations (FR). FedDF shows the poorest performance, 
likely due to the non-IID characteristics of user behavior, 
which hinder the creation of effective proxy datasets. Al-
though FedProx have the ability to guarantee convergence 
in non-IID situations, As a trade-off, it requires more 
training epochs. In contrast, FedDyn converges more 
quickly and can rapidly approach a level close to the opti-
mal value across all evaluation datasets. FedDyn DF adds 
regularization optimization to FedDyn, making it have a 
higher convergence speed.

4. Conclusion
The experiment confirmed that the optimized algorithm 
delivers Improved recommendation Efficiency than the 
meta algorithm and outperforms baseline methods such as 
FedAvg, FedProx, and FedDF. It has been shown to effec-
tively train accurate recommendation models while safe-
guarding user privacy. Similar to the original algorithm, it 
exhibits advantages in addressing identically distributed 
and non-independent(non-IID) data issues. In comparative 
experiments, the optimized algorithm demonstrates supe-
rior convergence speed and effectively reduces communi-
cation overhead. The limitation of this experiment is the 
lack of further comparison of methods for designing the 
robustness and communication efficiency of the algorithm. 
No adjustments were made to the characteristics of the 
two algorithms during the combination process. Subse-
quent research can improve the original algorithm derived 
from the algorithm characteristics of Federated Dynamic 
Regularizer and Dynamic Federated Distillation, so that 
the combination of the two can have faster convergence 
speed and stronger robustness.
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