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Abstract:
Compressed sensing, as an important signal processing 
technology, uses the sparsity or structure of the signal to 
reconstruct the original signal with samples much lower 
than the traditional sampling rate. Federated learning 
(FL), as a distributed machine learning method that allows 
model training without sharing sensitive data, provides 
an effective way to share knowledge across devices and 
organizations. Combining compressed sensing with 
federated learning has potential synergistic advantages, 
which can not only achieve efficient information 
extraction and transmission, but also protect personal 
privacy data. This paper aims to explore how compressed 
sensing technology can be applied to federated learning 
to accelerate the model training process, improve model 
accuracy, and ensure data privacy. By deeply studying 
this field, this paper reveals the potential applications, 
challenges and future development directions of 
compressed sensing in the federated learning environment, 
and promotes further innovation and application in the 
field of federated learning. Through comprehensive 
experiments and analysis, this paper provides insights into 
the integration of compressed sensing within federated 
learning frameworks, highlighting its role in optimizing 
communication efficiency and resource utilization.

Keywords: Compressive Sensing; Federated Learning; 
Data privacy.

1. Introduction
With the rapid development of big data and artificial 
intelligence, protecting data privacy and security has 
become an important topic in modern machine learn-
ing. Traditional centralized machine learning meth-
ods require data to be aggregated to a central server 
for processing, which undoubtedly increases the risk 
of data leakage, especially in sensitive fields such as 

medicine and finance. Therefore, federated learning 
(FL) came into being. As a decentralized learning 
method, it allows multiple devices to jointly train 
models without sharing data, ensuring the privacy of 
data. However, federated learning still faces many 
challenges in practical applications, especially the 
high communication cost and non-IID.
The core of federated learning is to avoid privacy 
leakage by transmitting model parameters rather 
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than data to the server for aggregation. However, the fre-
quent communication needs between multiple devices 
lead to huge bandwidth consumption, especially when 
the number of participating devices increases. This prob-
lem is particularly prominent. To this end, many scholars 
have proposed various optimization algorithms to reduce 
communication costs. For example, McMahan et al. [1] 
proposed a communication-efficient federated learning 
algorithm that achieves efficient model learning by reduc-
ing data transmission between the client and the server. In 
addition, the research of Reddi et al. [2] pointed out that 
by optimizing the problem of inconsistent learning speeds 
between clients, the convergence speed of the model can 
be effectively improved.
Although these optimization methods have alleviated the 
communication problem in federated learning to a certain 
extent, data heterogeneity is still a key challenge to be 
solved. The non-IID distribution of client data will lead to 
a decline in global model performance. In response to this, 
Khaled et al. [3] proposed a distributed convex optimiza-
tion algorithm that performs well in complex distributed 
systems, especially when processing large-scale data, the 
convergence speed is significantly improved. These stud-
ies provide strong theoretical support for our understand-
ing and solution of the challenges in federated learning.
In terms of solving the communication cost problem in 
federated learning, compressed sensing (CS) technology 
provides a new idea. Compressed sensing reconstructs 
signals from data far lower than the traditional sampling 
rate by utilizing the sparsity of signals, thereby signifi-
cantly reducing the amount of data transmission. Candes 
and Wakin [4] systematically introduced the principles of 
compressed sensing in their research and demonstrated 
its potential in data reconstruction and signal acquisition. 
Baraniuk et al. [5] further expanded this theory and pro-
posed a model-based compressed sensing method that 
significantly improved the efficiency of signal processing. 
By combining compressed sensing technology, the com-
munication overhead in federated learning can be greatly 
reduced, while the accuracy of the model can also be 
guaranteed [6,7].
In the face of the problems of privacy and communication 
efficiency, Ye Liu et al. [8] proposed Cepe-FL technology, 
which combines compressed sensing and adaptive com-
pression technology to effectively solve the communica-
tion overhead and privacy protection problems in federat-
ed learning, and significantly reduce the communication 
cost while ensuring the accuracy of the model.
The main contribution of this paper is to sort out and sum-
marize these research results in detail, and systematically 
analyze the advantages and disadvantages of different 
technologies and their application scenarios. In particu-

lar, the advantages of compressed sensing technology in 
reducing communication costs and its combination with 
existing federated learning optimization algorithms. This 
paper also looks forward to possible future research direc-
tions, including how to optimize and promote these tech-
nologies in more complex application scenarios to cope 
with higher computing and communication.

2. Organization of the Text

2.1 Compressed sensing(CS)
 CS relies on two principles: sparsity, which pertains to 
the signals of interest, and incoherence, which pertains to 
the sensing modality [9].
2.1.1 Sparsity

Sparsity refers to the property that the “information rate” 
of a continuous-time signal may be much smaller than 
predicted by its bandwidth, or that a discrete-time signal 
depends on a number of degrees of freedom that is much 
smaller than its (finite) length. More precisely, CS exploits 
the fact that many signals are sparse or compressible when 
expressed in an appropriate basis [9].
2.1.2 Incoherence

Incoherence expands the duality between time and fre-
quency and expresses that the incoherence in Ø  must be 
spread out in the domain from which they were obtained, 
just as a Dirac or spike in the time domain spreads out in 
the frequency domain. In other words, incoherence indi-
cates that unlike the signal of interest, the sampled/sensed 
waveform in Ø [9].
In summary, CS is a very simple and efficient signal ac-
quisition protocol that, unlike traditional sampling theo-
rems, samples at a low rate and later uses computational 
power to reconstruct the signal from a seemingly incom-
plete set of measurements.

2.2 Federated Learning
Federated Learning is a distributed machine learning 
method that allows multiple devices to collaboratively 
train global models without sharing data. In this way, fed-
erated learning can fully utilize the local computing power 
of each client while protecting data privacy. An important 
feature of federated learning is its decentralized training 
mechanism. The client updates the model locally, and 
the server is only responsible for aggregating the model 
parameters of each client. This method avoids the direct 
transmission of sensitive data, thereby enhancing data pri-
vacy protection.
However, federated learning faces several challenging 
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issues, including non-IID data and high communication 
cost. Since the data distribution of each client is often 
uneven, this will lead to decreased training efficiency and 
accuracy of the global model.To address these challenges, 
many optimization methods have been proposed, such as 
the distributed deep learning algorithm proposed by Miao 
Y et al. [8] that makes communication more efficient and 
effectively reduces the data transmission between the cli-
ent and the server. In addition, algorithms such as FedProx 
and FedAvg partially alleviate the problems caused by 
data heterogeneity by adjusting the client’s model update 
method.

2.3 Integration of Compressed Sensing and 
Federated Learning
The integration of compressed sensing with federated 
learning offers new approaches to address high commu-
nication costs and data heterogeneity. By applying com-
pressed sensing to model transmission in federated learn-
ing, clients can significantly reduce the amount of data 
that needs to be transmitted without compromising model 
performance, thus lowering communication overhead. 
One of the key challenges in federated learning is the 
substantial bandwidth burden caused by frequent commu-
nication between the server and a large number of clients. 
Compressed sensing effectively reduces data transmission 
by compressing model parameters.
For example, Miao et al. [8] explored the combination of 
compressed sensing with contrastive learning (MCFL-CS), 
as shown in Fig 1, where compressed sensing reduces the 
transmission of model parameters while differential priva-
cy techniques protect data security. Experimental results 
demonstrate that this approach not only reduces commu-
nication costs but also significantly improves model ac-
curacy in federated learning, particularly in non-IID data 
environments.

Fig 1: System model of the MCFL-CS scheme 
[8].

Compressed sensing is also used for node selection opti-
mization to enhance computational efficiency in federated 
learning. For instance, Islam et al [9]. proposed a com-
pressed sensing method based on sparse regularization, 
which reduces communication and computational over-
head during model updates by selecting important nodes. 
This method not only accelerates model convergence but 
also shows greater stability in non-IID data environments.

3. Analysis of Experimental Results
In this section, this paper conducts a detailed analysis of 
the practical performance of compressed sensing technolo-
gy in federated learning, focusing primarily on the optimi-
zation of communication costs, performance improvement 
under non-IID data, and the balance between local train-
ing rounds and communication efficiency [10]. Through a 
comprehensive analysis of various experiments, this paper 
demonstrates that compressed sensing effectively allevi-
ates the common challenges of high communication costs 
and data heterogeneity in federated learning.

3.1 Optimization of Communication Costs 
through Compressed Sensing
Communication costs represent a major bottleneck in 
federated learning, particularly in large-scale distributed 
training involving multiple devices. During each round 
of communication, clients and servers need to frequently 
exchange large amounts of model updates, resulting in 
extremely high bandwidth demands. Compressed sensing 
technology significantly reduces the amount of data trans-
mitted per communication round by compressing model 
parameters. In several experiments, compressed sensing 
has been shown to reduce communication costs by up to 
95% while maintaining model accuracy [6,8].
This effect is especially notable in resource-constrained 
devices and network environments, such as mobile devic-
es and edge computing. In these scenarios, communication 
bandwidth is often limited, and frequent data transmission 
can lead to severe latency and high communication costs. 
By applying compressed sensing, clients can compress 
their model updates before uploading, greatly reducing 
the amount of data transmitted. This not only improves 
overall system efficiency but also lowers the reliance on 
high bandwidth. In particular, in scenarios with large data 
volumes and many devices, such as in smart healthcare 
and financial risk management, compressed sensing paves 
the way for the application of federated learning.

3.2 Improvement of Model Performance in 
Non-IID Data
Non-IID data environments are another significant chal-
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lenge faced by federated learning. In traditional federated 
learning, models generally assume that data across cli-
ents are independently and identically distributed (IID). 
However, in real-world applications, data across different 
clients are often unevenly distributed. This data heteroge-
neity can slow down model convergence and even affect 
the final model accuracy.
By integrating compressed sensing, federated learning 
frameworks demonstrate enhanced adaptability to non-
IID data [11,12]. By removing unnecessary information 
and retaining only key features, compressed sensing 
effectively mitigates the impact of non-uniform data dis-

tribution on the global model. Experimental results show 
that federated learning with compressed sensing achieves 
approximately 3% to 5% improvements in model accura-
cy across multiple benchmark datasets. This improvement 
is particularly evident in image classification tasks. For 
instance, in the CIFAR-10 and Fashion-MNIST datasets, 
models utilizing compressed sensing show significant ac-
curacy improvements compared to the traditional FedAvg 
algorithm. This demonstrates that compressed sensing not 
only optimizes communication but also enhances model 
performance in non-IID data environments.

Table 1. Test Accuracy Rankings Across Four Datasets. Results in bold indicate the best performance.

FL algorithms MNIST Fashion-MNIST CIFAR-10 SVHN
MCFL-CS 99.4% 88.6% 70.2% 88.9%
FedAvg 98.4% 82.9% 66.3% 85.7%
FedProx 97.4% 83.6% 66.9% 85.8%
MOON 99.1% 85.4% 69.1% 87.6%
SOLO 90.9% 79.0% 46.3% 80.6%

Additionally, compressed sensing technology reduces 
the amount of data in model updates, mitigating the bias 
issues caused by uneven data distribution. This makes the 
overall performance of federated learning more stable and 

efficient in real-world applications with high data variabil-
ity. Figure 2 shows two methods for testing the accuracy 
of CNN models in multi round communication on the CI-
FAR-10 dataset.

Fig 2: Test accuracy of the CNN model on the CIFAR-10 dataset over multiple communication 
rounds under FedAvg, Fedpns, and the proposed method. Heterogeneity ratios are σ = 0.3 (a) 

and 0.5 (b)[9].

3.3 Balance of local training rounds with com-
munication efficiency
Adaptive compressed sensing is a technology that com-
bines adaptability and compressed sensing to reduce data 
redundancy and improve data transmission efficiency 
during signal collection and transmission. In adaptive 
compressed sensing, the data collection process dynam-

ically adjusts parameters according to the structure and 
content of the observed data in order to retain useful in-
formation to the maximum extent and remove redundant 
information during the transmission process. This makes 
data transmission more efficient, saving transmission 
bandwidth and storage space.
In this paper, Miao Y [8] and others used compression 
technology to significantly reduce the communication 
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overhead in federated learning. Experiments show that 
compared with the traditional FedAvg method, the com-
munication overhead can be reduced by up to 76.2% 
while maintaining similar model accuracy. And it leads to 
enhanced privacy protection: since the model parameters 
are transmitted after compression, the attacker cannot di-
rectly restore the original local updates, especially in the 
absence of compressed base dictionary. Therefore, Cepe-
FL significantly reduces the success rate of membership 
inference attacks, and the inference success rate under 
white-box attacks is reduced by 20%. Through dictionary 
learning and adaptive compression, Cepe-FL can still ef-
fectively restore model parameters even under large com-
pression ratios, thereby maintaining model performance 
and improving model reconstruction accuracy.
Suitable for a variety of data distribution scenarios: Exper-
imental results show that Cepe-FL performs well in both 
IID (independent and identically distributed) and non-
IID data scenarios, and its accuracy and communication 
efficiency have significant advantages over other existing 
communication efficient methods.
In summary, Cepe-FL combines compressed sensing and 
adaptive compression technology to effectively solve the 
communication overhead and privacy protection issues in 
federated learning, and significantly reduces communica-
tion costs while ensuring model accuracy.

3.4 Efficient communication and privacy en-
hancement through adaptive compressed sens-
ing
Adaptive compressed sensing is a technology that com-
bines adaptability and compressed sensing to reduce data 
redundancy and improve data transmission efficiency 
during signal collection and transmission. In adaptive 
compressed sensing, the data collection process dynam-
ically adjusts parameters according to the structure and 
content of the observed data in order to retain useful in-
formation to the maximum extent and remove redundant 
information during the transmission process. This makes 
data transmission more efficient, saving transmission 
bandwidth and storage space.
In this paper, Miao Y [8] and others used compression 
technology to significantly reduce the communication 
overhead in federated learning. Experiments show that 
compared with the traditional FedAvg method, the com-
munication overhead can be reduced by up to 76.2% 
while maintaining similar model accuracy. And it leads to 
enhanced privacy protection: since the model parameters 
are transmitted after compression, the attacker cannot di-
rectly restore the original local updates, especially in the 
absence of compressed base dictionary. Therefore, Cepe-

FL significantly reduces the success rate of membership 
inference attacks, and the inference success rate under 
white-box attacks is reduced by 20%. Through dictionary 
learning and adaptive compression, Cepe-FL can still ef-
fectively restore model parameters even under large com-
pression ratios, thereby maintaining model performance 
and improving model reconstruction accuracy.
Suitable for a variety of data distribution scenarios: Exper-
imental results show that Cepe-FL performs well in both 
IID (independent and identically distributed) and non-
IID data scenarios, and its accuracy and communication 
efficiency have significant advantages over other existing 
communication efficient methods.
In summary, Cepe-FL combines compressed sensing and 
adaptive compression technology to effectively solve the 
communication overhead and privacy protection issues in 
federated learning, and significantly reduces communica-
tion costs while ensuring model accuracy.

4. Challenges and prospects
Although the combination of compressed sensing tech-
nology and federated learning has shown remarkable 
results in solving the problems of high communication 
cost and data heterogeneity, it still faces some challenges. 
First, data heterogeneity remains a core problem in fed-
erated learning. When client data is unevenly distributed, 
although compressed sensing can reduce the amount of 
transmitted data, excessive compression may lead to in-
formation loss, thereby affecting the accuracy of the glob-
al model. Especially in scenarios with highly uneven data 
distribution, the performance of the model may not reach 
the ideal level.
Secondly, the integration problem of model updates is 
also an urgent challenge that needs to be solved. When the 
number of clients increases, how to effectively integrate 
the model updates of each client to ensure the stability 
of the global model remains a difficulty. Although com-
pressed sensing can significantly reduce the amount of 
data transmission, extreme pruning and compression of 
model parameters may bring more uncertainty in large-
scale systems, which places higher requirements on the 
robustness of federated learning.
Looking to the future, further optimizing the combination 
of compressed sensing and federated learning is a direc-
tion worthy of in-depth study. First, smarter compression 
algorithms can be explored to achieve the best results 
under different tasks and data sets by adaptively adjusting 
the compression ratio. In addition, further strengthening 
the privacy protection mechanism is also a research focus. 
In the future, data security can be improved by combining 
compressed sensing and differential privacy technology 
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[13].
Finally, with the rapid development of the Internet of 
Things and edge computing, how to efficiently deploy 
federated learning technology in resource-constrained 
environments will also be the focus of future research. 
Compressed sensing technology provides effective com-
munication optimization solutions for these scenarios. In 
the future, more in-depth technology combinations can be 
used to promote the application and development of fed-
erated learning in more practical scenarios.

5. Conclusion
This article reviews the application of compressed sensing 
technology in federated learning, focusing on analyzing 
how to reduce communication costs through compressed 
sensing technology and improve the model performance of 
federated learning in non-IID data environments. Through 
the summary and analysis of multiple related studies, this 
paper explores the advantages of combining compressed 
sensing with federated learning, especially the potential in 
dealing with high communication overhead and data het-
erogeneity. Combined with existing experimental results, 
compressed sensing technology significantly improves the 
efficiency and scalability of federated learning by reduc-
ing data transmission between the client and the server.
Overall, compressed sensing provides an effective solu-
tion to solve the communication bottleneck in federated 
learning. Experiments show that without sacrificing model 
accuracy, compressed sensing can significantly reduce 
bandwidth requirements and show greater robustness in 
the face of uneven data distribution. Despite this, com-
pression and pruning of model parameters may still cause 
a certain amount of information loss, especially when data 
heterogeneity is high, which is still a problem that needs 
to be overcome in future research.
In the future, with the development of emerging technol-
ogies such as the Internet of Things and edge comput-
ing, the application scenarios of federated learning will 
become more widespread. How to further optimize the 
combination of compressed sensing and federated learn-
ing in these resource-constrained environments will be 
the focus of future research. In addition, the development 
of intelligent compression algorithms, the combination 
of differential privacy and compressed sensing, and their 
promotion and application in large-scale systems are all 
key directions to promote the development of federated 
learning technology. Through further technical optimi-
zation, compressed sensing is expected to provide more 

efficient solutions for a wide range of applications of fed-
erated learning.
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