
ISSN 2959-6157

Dean&Francis

2115

Abstract:
The Serial Peripheral Interface (SPI) is a synchronous
serial communication protocol commonly used in
embedded systems, facilitating the connection between
microcontrollers and peripheral devices such as sensors,
displays, and memory. Traditional SPI hardware
implementations often lack flexibility in clock frequency,
clock polarity (CPOL), and clock phase (CPHA), limiting
their adaptability in various applications and increasing
development time and cost. To address these issues,
this study designs and implements a configurable SPI
module that can dynamically adjust parameters such
as clock frequency, data bit width, CPOL, and CPHA
through register control. The core of this design adopts
a modular architecture that allows flexible configuration
via register control, ensuring compatibility with different
SPI modes and peripheral devices. Simulation tests
have verified that the SPI module achieves the expected
dynamic flexibility across multiple operation modes while
ensuring communication accuracy and system stability.
The configurable SPI module enhances the adaptability
of embedded system communication protocols, reducing
the need for hardware redesigns for specific applications.
This register-based dynamic SPI design holds significant
practical value in engineering applications and helps
improve hardware development efficiency.

Keywords: SPI; embedded systems; dynamic configura-
tion; register control.

1. Introduction
SPI (Serial Peripheral Interface) is a synchronous se-
rial communication protocol widely used in embed-
ded systems to enable fast data transmission between
master and slave devices.
Embedded system applications are becoming more
complex. This increases the demand for greater
configurability and flexibility in SPI modules. De-

sign optimizations focus on multi-mode switching,
adjustable data transmission rates, and bit widths.
In existing research, Shingare and Patil introduced
an FPGA-based SPI implementation in their study.
[1] This design realized a modular SPI circuit using
Verilog hardware description language and employed
a state machine to control SPI bus communication.
However, this research primarily focused on the ba-

The Hardware Implementation of a
Register-configurable SPI Interface

Zefeng Liu

Department of Electronic
Information Engineering,
Beijng University of Posts and
Telecommunications, Beijing, China

Corresponding author:
jp2022213543@qmul.ac.uk

1

Dean&Francis

2116

ISSN 2959-6157

sic functionality of SPI and did not explore the dynamic
configuration capabilities of the SPI module in depth, es-
pecially in terms of adjusting clock modes and bit widths
dynamically, where there is still room for further optimi-
zation.
In addition, Yang Jiang et al. designed a configurable SPI
interface based on the APB bus. [2] This solution enabled
master-slave mode switching, clock mode switching, and
MSB/LSB communication mode switching via the APB
bus, supporting variable transmission lengths from 1 to 32
bits. The design adopted a finite state machine to control
the transmission timing of the SPI interface. Through RTL
simulation and FPGA verification, the results showed that
the design performed well in terms of functionality and
data transmission stability.
Based on the above research background, this study aims
to improve the design of existing SPI modules by combin-
ing the advantages of state machine methods and configu-
rable register. The study implements dynamic adjustments
of clock frequency, data bit width, and transmission mode
through register configuration. It aims to provide an effi-
cient, reliable, and flexible SPI communication solution.
This solution meets the needs of different embedded sys-
tem application scenarios.

2. Research of Objectives

2.1 Support for Multiple SPI Communication
Modes
Achieve full support for the four SPI protocol modes (the
four combinations of CPOL/CPHA), enabling the module
to be compatible with different slave devices and improv-
ing system versatility. Automatically adjust the data sam-
pling and transmission timing based on CPOL and CPHA
settings to ensure the accuracy and reliability of data com-
munication.

2.2 Dynamic Adjustment of SPI Clock Frequen-
cy
Enable dynamic adjustment of the SPI clock frequency
through register settings, supporting multiple frequency
levels to accommodate communication needs at different
rates. Design a clock divider module that can generate the
required SPI clock signal based on the set division factor.

2.3 Adjustable Data Transmission Bit Width
Support flexible configuration of data transmission bit
width, allowing the selection of different data lengths such
as 8-bit, 16-bit, 24-bit, or 32-bit according to application
requirements. Design shift registers and control logic to
ensure accurate data transmission and reception at differ-
ent bit widths.

3. System Design and Module Imple-
mentation
This study designed the SPI module using Verilog HDL,
combined with ModelSim for simulation and verification.
Although VHDL is widely used in FPGA design, Verilog
also performs excellently in digital circuit design due to
its simplicity and efficiency. Leal-del Río et al. adopted a
similar approach in their research, implementing SPI and
I2C protocols using Verilog and demonstrating its advan-
tages in terms of data transmission speed and hardware
resource utilization[3][4].
The SPI module design in this study adopts a modular
and parameterized architecture to enhance system flexi-
bility and scalability. The overall design mainly includes
functional units such as the clock generation module,
state machine control module, data transmission module,
register configuration module, and control signal gener-
ation module. These modules work together to achieve
the dynamic configuration and stable transmission of SPI
communication. The state machine control module plays
a key role in this design, controlling the entire process of
data transmission through state transitions. The state ma-
chine method proposed by Qiang Jiayi et al. (2020) has
been successfully applied to FPGA implementations of
SPI buses, proving its effectiveness in synchronous serial
communication [5].

3.1 Key Module Design
First, the clock generation module is one of the core com-
ponents of the system. It generates the SPI clock signal
by setting the division factor via registers. This module
can dynamically adjust the clock frequency according to
system requirements to support different communication
rates. Additionally, the module configures the initial clock
level based on the CPOL (clock polarity) parameter in the
register, ensuring the correct execution of the SPI commu-
nication protocol.
Second, the state machine control module serves as the
control center for the SPI communication process. The
state machine ensures that the SPI module transitions
sequentially between different states, including initial-
ization, idle, start, data transmission, stop, and error
handling. Each state has a clearly defined function. For
example, in the INIT state, the SPI module initializes
relevant parameters based on the register settings; in the
TRANSFER state, the module performs data transmission
and reception operations based on the CPOL and CPHA
(clock phase) configurations; and in the STOP state, the
system completes communication and returns to the initial
idle state.
Next, the data transmission module consists of two shift
registers for transmission and reception, respectively used
for MOSI (Master Out Slave In) data transmission from

2

Dean&Francis

2117

ZEFEng LIU

master to slave and MISO (Master In Slave Out) data
reception from slave to master. During transmission, the
shift registers shift data in or out bit by bit on the rising
or falling edge of the clock signal, enabling synchronous
data transmission. This module supports different data
transmission widths, allowing the selection of 8-bit, 16-
bit, 24-bit, or 32-bit data lengths based on register config-
urations, ensuring system flexibility and compatibility.
The register configuration module is crucial for realizing
the reconfigurability of the SPI module. This module
adjusts SPI parameters such as clock frequency, data bit
width, CPOL, and CPHA by setting registers, enabling
dynamic adjustments for SPI communication. Controlled
by the state machine, the configuration values in the regis-
ters are loaded into the control module during the system
initialization phase, allowing the SPI module to be adjust-
ed in real-time according to application requirements, thus
improving system adaptability.

3.2 Detailed Explanation of State Machine De-
sign
The state machine is the core control unit of the SPI mod-
ule, used to control the data transmission process and the
operating states of the SPI module. Through state transi-
tions, the SPI module executes the complete communica-
tion process, from initialization to data transmission and
then to the end, based on different operation commands
and status signals, ensuring system stability and reliability.
The entire state machine design is divided into several key
states: initialization (INIT), idle (IDLE), start (START),
data transmission (TRANSFER), stop (STOP), and error
handling (ERROR). The function and role of each state
are as follows:
3.2.1 Initialization state (InIT)

The initialization state is the starting state of the system.
In this state, the SPI module sets various initial param-
eters of the system, including clock polarity (CPOL),
clock phase (CPHA), clock division factor (div_factor),
and other parameters. These parameters are read from the
registers and configured into the corresponding control
modules. Meanwhile, the chip select signal (CS) is pulled
high, indicating that the SPI module is in an inactive state.
After completing all necessary initialization operations,
the state machine switches to the idle state (IDLE).
3.2.2 Idle state (IDLE)

When the SPI module is in the idle state, the system is in
standby mode, waiting for an external start signal (start)
to arrive. In this state, the clock signal maintains stable
output, and the data registers and other control parameters
remain unchanged. Once the start signal is detected, the
state machine immediately switches from the IDLE state
to the start state (START), preparing for data transmission.
3.2.3 Start state (START)

The SPI module prepares to enter data transmission mode
in the start state. First, the chip select signal (CS) is pulled
low, indicating the start of SPI communication. Next, the
data registers load the data to be transmitted, and the data
shifting operation is prepared based on the configured
bit width and clock settings. Once the data and control
signals are ready, the state machine transitions to the data
transmission state (TRANSFER).
3.2.4 Data transmission state (TRAnSFER)

The data transmission state is the main working state of
the SPI module. In this state, data is sent from the mas-
ter device to the slave device via the MOSI (Master Out
Slave In) line, or received from the slave device via the
MISO (Master In Slave Out) line. The shifting of data is
performed on the rising or falling edge of the clock sig-
nal, determined by the CPOL and CPHA settings. In each
clock cycle, data is shifted out or in bit by bit until all data
is transmitted. After the transmission is complete, the state
machine switches to the stop state (STOP).
3.2.5 Stop state (STOP)

After the data transmission is completed, the system en-
ters the stop state. In this state, the chip select signal (CS)
is pulled high again, indicating the end of data transmis-
sion. Meanwhile, the SPI module sets the transmission
completion flags (tx_done and rx_done) to indicate that
the current transmission process has been successfully
completed. At this point, the system returns to the idle
state (IDLE), waiting for the next transmission request.

4. Simulation and Verification

4.1 Basic Functionality Verification

4.1.1 Set the rst signal to reset the module and check
the initialization state (InIT).

3

Dean&Francis

2118

ISSN 2959-6157

Fig. 1 InIT state
As shown in Figure 1, when the rst signal is pulled high,
the state enters the INIT state, and information such as
cpol, cpha, and div_factor is written into the registers. The
chip select signal is pulled high, waiting for the start state,

at which point it is pulled low to trigger the communica-
tion.
4.1.2 Configure div_factor, cpol, and cpha, and observe
the generation of the SPI clock.

Fig. 2 Configurable parameters in the INIT state
As shown in Figure 2, when the division factor is set to 4
and both cpol and cpha are set to 0, the SPI clock signal is
generated as illustrated in the figure.
4.1.3 Activate the start signal and verify the transition
from the IDLE state to the START state.

4

Dean&Francis

2119

ZEFEng LIU

Fig. 3 START state
As shown in Figure 3, after entering the IDLE state, the
state switches to START upon detecting that the start sig-
nal is pulled high after one clock cycle. In this state, the
shift register is initialized, the transmission data is written
into the shift register, and the length of the transmission

data is written into the register. The tx_done and rx_done
signals are pulled low, indicating that the transmission is
not yet complete.
4.1.4 Send data via MOSI output and check the data
shifting operation in the TRAnSFER state.

Fig. 4 MOSI signal in the TRAnSFER state
As shown in Figure 4, with both cpol and cpha set to 0, 32
bits of data, “10101010 10101010 10101010 10101010,”
are transmitted on the rising edge of the clock.
4.1.5 Receive data via MISO input and verify that the
data is correctly shifted into the data_out register.

5

Dean&Francis

2120

ISSN 2959-6157

Fig. 5 MISO signal in the TRAnSFER state
As shown in Figure 5, with both cpol and cpha set to 0, 32
bits of data are received on the MISO line along the fall-
ing edge of the clock.

4.1.6 After completing the transmission, check the
STOP state and confirm that the tx_done and rx_done
flags are set.

Fig. 6 STOP State
As shown in Figure 6, after the data length decreases to 0,
the tx_done and rx_done signals are pulled high, and the
state transitions to STOP.

4.2 Multi-mode Testing
Testing Objective: Verify the operation of SPI under dif-
ferent combinations of CPOL and CPHA, ensuring that
data is correctly transmitted in all modes
4.2.1 Mode0(cpha=0 cpol=0)

6

Dean&Francis

2121

ZEFEng LIU

Fig. 7 Mode 0
As shown in Figure 7, in this mode, data is transmitted on
the rising edge and received on the falling edge, and the

clock signal is low during the idle state.
4.2.2 Mode1(cpha=1 cpol=0)

Fig. 8 Mode 1
As shown in Figure 8, in this mode, data is received on
the rising edge and transmitted on the falling edge, and
the clock signal is low during the idle state.
4.2.3 Mode2(cpha=0 cpol=1)

7

Dean&Francis

2122

ISSN 2959-6157

Fig. 9 Mode 2
As shown in Figure 9, in this mode, data is received on
the rising edge and transmitted on the falling edge, and

the clock signal is high during the idle state.
4.2.4 Mode3(cpha=1 cpol=1)

Fig. 10 Mode 2
As shown in Figure 10, in this mode, data is transmitted
on the rising edge and received on the falling edge, and
the clock signal is high during the idle state.
In conclusion, through simulation and verification, the
design of the SPI module fully meets expectations and all
functions have been successfully implemented.

5. Discussion
The practical significance of this study lies in the imple-
mentation of a configurable SPI module, which enhances
the flexibility and adaptability of embedded systems in
communication protocol design. It reduces the need for
hardware redesigns and improves development efficiency.
This module has broad potential for future applications,

particularly in fields such as IoT devices, industrial au-
tomation, and sensor networks, where it can effectively
meet diverse data communication requirements. Fur-
thermore, this design contributes to the advancement of
embedded systems towards greater flexibility and higher
performance, providing an efficient and reliable solution
for complex embedded application scenarios.

6. Conclusion
This report provides a detailed explanation of the design
and implementation process of the configurable SPI hard-
ware module, covering the background and significance of
the project, system design, module implementation, and
simulation and verification. It comprehensively demon-

8

Dean&Francis

2123

ZEFEng LIU

strates all aspects of the SPI module. Through register
configuration, the SPI module achieves dynamic adjust-
ments for clock frequency, data bit width, clock phase
(CPHA), and clock polarity (CPOL), significantly improv-
ing the adaptability and generality of the hardware.
In the module implementation, this study meticulously
designed key modules such as clock signal generation,
data transmission, state machine control, and register con-
figuration, ensuring system stability and efficiency. The
module exhibited excellent functionality and stability un-
der different operating conditions through simulation and
verification of various modes. The simulation results were
fully consistent with expectations, confirming the correct-
ness and reliability of the design.
The successful realization of this project not only address-
es the fixed configuration limitations of traditional SPI
hardware but also provides a flexible solution for the data
communication needs in various application scenarios.
The module operates stably across multiple frequencies,
data bit widths, and communication modes, demonstrating
strong potential for engineering applications.
Future work will focus on further optimizing the module’s
performance, including improving timing accuracy, reduc-
ing power consumption, and implementing and testing on
actual hardware. Overall, this project provides an innova-

tive and practical solution for SPI communication design
in embedded systems, with significant engineering appli-
cation value and broad prospects for further development.

References
[1] D. Trupti, R. T. ShingarePatil. SPI Implementation on FPGA.
International Journal of Innovative Technology and Exploring
Engineering (IJITEE), 2013,2: 2278-3075.
[2] Jiayi Qiang, Yong Gu, Guochu Chen. FPGA Implementation
of SPI Bus Communication Based on State Machine Method.
Journal of Physics: Conference Series, 2020,1449.
[3] A. Maity, P. K. Samanta, B. P. De, S. K. Dash, W. Bhowmik
and A. Bakshi, “FPGA Implementation of Serial Peripheral
Interface Transceiver Module,” 2024 International Conference
on Computer, Electrical Communication Engineering
(ICCECE), Kolkata, India, 2024:1-5
[4] Tatiana Leal-del Río, Gustavo Juarez-Gracia, L. Noé Oliva-
Moreno, “Implementation of the communication protocols
SPI and I2C using an FPGA by the HDL-Verilog language,”
Research in Computing Science, 2014, 75: 31–41.
[5] Yang Jiang, Yile Xiao, Dejian Li, Zheng Li, Zhijie Chen,
Peiyuan Wan. A Configurable SPI Interface Based on APB Bus.
2020 IEEE 14th International Conference on Anti-counterfeiting,
Security, and Identification (ASID).2020

9

