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Abstract:
The Serial Peripheral Interface (SPI) is a synchronous 
serial communication protocol commonly used in 
embedded systems, facilitating the connection between 
microcontrollers and peripheral devices such as sensors, 
displays,  and memory. Traditional SPI hardware 
implementations often lack flexibility in clock frequency, 
clock polarity (CPOL), and clock phase (CPHA), limiting 
their adaptability in various applications and increasing 
development time and cost. To address these issues, 
this study designs and implements a configurable SPI 
module that can dynamically adjust parameters such 
as clock frequency, data bit width, CPOL, and CPHA 
through register control. The core of this design adopts 
a modular architecture that allows flexible configuration 
via register control, ensuring compatibility with different 
SPI modes and peripheral devices. Simulation tests 
have verified that the SPI module achieves the expected 
dynamic flexibility across multiple operation modes while 
ensuring communication accuracy and system stability.
The configurable SPI module enhances the adaptability 
of embedded system communication protocols, reducing 
the need for hardware redesigns for specific applications. 
This register-based dynamic SPI design holds significant 
practical value in engineering applications and helps 
improve hardware development efficiency.

Keywords: SPI; embedded systems; dynamic configura-
tion; register control.

1. Introduction
SPI (Serial Peripheral Interface) is a synchronous se-
rial communication protocol widely used in embed-
ded systems to enable fast data transmission between 
master and slave devices.
Embedded system applications are becoming more 
complex. This increases the demand for greater 
configurability and flexibility in SPI modules. De-

sign optimizations focus on multi-mode switching, 
adjustable data transmission rates, and bit widths. 
In existing research, Shingare and Patil introduced 
an FPGA-based SPI implementation in their study. 
[1] This design realized a modular SPI circuit using 
Verilog hardware description language and employed 
a state machine to control SPI bus communication. 
However, this research primarily focused on the ba-
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sic functionality of SPI and did not explore the dynamic 
configuration capabilities of the SPI module in depth, es-
pecially in terms of adjusting clock modes and bit widths 
dynamically, where there is still room for further optimi-
zation.
In addition, Yang Jiang et al. designed a configurable SPI 
interface based on the APB bus. [2] This solution enabled 
master-slave mode switching, clock mode switching, and 
MSB/LSB communication mode switching via the APB 
bus, supporting variable transmission lengths from 1 to 32 
bits. The design adopted a finite state machine to control 
the transmission timing of the SPI interface. Through RTL 
simulation and FPGA verification, the results showed that 
the design performed well in terms of functionality and 
data transmission stability.
Based on the above research background, this study aims 
to improve the design of existing SPI modules by combin-
ing the advantages of state machine methods and configu-
rable register. The study implements dynamic adjustments 
of clock frequency, data bit width, and transmission mode 
through register configuration. It aims to provide an effi-
cient, reliable, and flexible SPI communication solution. 
This solution meets the needs of different embedded sys-
tem application scenarios.

2. Research of Objectives

2.1 Support for Multiple SPI Communication 
Modes
Achieve full support for the four SPI protocol modes (the 
four combinations of CPOL/CPHA), enabling the module 
to be compatible with different slave devices and improv-
ing system versatility. Automatically adjust the data sam-
pling and transmission timing based on CPOL and CPHA 
settings to ensure the accuracy and reliability of data com-
munication.

2.2 Dynamic Adjustment of SPI Clock Frequen-
cy
Enable dynamic adjustment of the SPI clock frequency 
through register settings, supporting multiple frequency 
levels to accommodate communication needs at different 
rates. Design a clock divider module that can generate the 
required SPI clock signal based on the set division factor.

2.3 Adjustable Data Transmission Bit Width
Support flexible configuration of data transmission bit 
width, allowing the selection of different data lengths such 
as 8-bit, 16-bit, 24-bit, or 32-bit according to application 
requirements. Design shift registers and control logic to 
ensure accurate data transmission and reception at differ-
ent bit widths.

3. System Design and Module Imple-
mentation
This study designed the SPI module using Verilog HDL, 
combined with ModelSim for simulation and verification. 
Although VHDL is widely used in FPGA design, Verilog 
also performs excellently in digital circuit design due to 
its simplicity and efficiency. Leal-del Río et al. adopted a 
similar approach in their research, implementing SPI and 
I2C protocols using Verilog and demonstrating its advan-
tages in terms of data transmission speed and hardware 
resource utilization[3][4].
The SPI module design in this study adopts a modular 
and parameterized architecture to enhance system flexi-
bility and scalability. The overall design mainly includes 
functional units such as the clock generation module, 
state machine control module, data transmission module, 
register configuration module, and control signal gener-
ation module. These modules work together to achieve 
the dynamic configuration and stable transmission of SPI 
communication. The state machine control module plays 
a key role in this design, controlling the entire process of 
data transmission through state transitions. The state ma-
chine method proposed by Qiang Jiayi et al. (2020) has 
been successfully applied to FPGA implementations of 
SPI buses, proving its effectiveness in synchronous serial 
communication [5].

3.1 Key Module Design
First, the clock generation module is one of the core com-
ponents of the system. It generates the SPI clock signal 
by setting the division factor via registers. This module 
can dynamically adjust the clock frequency according to 
system requirements to support different communication 
rates. Additionally, the module configures the initial clock 
level based on the CPOL (clock polarity) parameter in the 
register, ensuring the correct execution of the SPI commu-
nication protocol.
Second, the state machine control module serves as the 
control center for the SPI communication process. The 
state machine ensures that the SPI module transitions 
sequentially between different states, including initial-
ization, idle, start, data transmission, stop, and error 
handling. Each state has a clearly defined function. For 
example, in the INIT state, the SPI module initializes 
relevant parameters based on the register settings; in the 
TRANSFER state, the module performs data transmission 
and reception operations based on the CPOL and CPHA 
(clock phase) configurations; and in the STOP state, the 
system completes communication and returns to the initial 
idle state.
Next, the data transmission module consists of two shift 
registers for transmission and reception, respectively used 
for MOSI (Master Out Slave In) data transmission from 
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master to slave and MISO (Master In Slave Out) data 
reception from slave to master. During transmission, the 
shift registers shift data in or out bit by bit on the rising 
or falling edge of the clock signal, enabling synchronous 
data transmission. This module supports different data 
transmission widths, allowing the selection of 8-bit, 16-
bit, 24-bit, or 32-bit data lengths based on register config-
urations, ensuring system flexibility and compatibility.
The register configuration module is crucial for realizing 
the reconfigurability of the SPI module. This module 
adjusts SPI parameters such as clock frequency, data bit 
width, CPOL, and CPHA by setting registers, enabling 
dynamic adjustments for SPI communication. Controlled 
by the state machine, the configuration values in the regis-
ters are loaded into the control module during the system 
initialization phase, allowing the SPI module to be adjust-
ed in real-time according to application requirements, thus 
improving system adaptability.

3.2 Detailed Explanation of State Machine De-
sign
The state machine is the core control unit of the SPI mod-
ule, used to control the data transmission process and the 
operating states of the SPI module. Through state transi-
tions, the SPI module executes the complete communica-
tion process, from initialization to data transmission and 
then to the end, based on different operation commands 
and status signals, ensuring system stability and reliability.
The entire state machine design is divided into several key 
states: initialization (INIT), idle (IDLE), start (START), 
data transmission (TRANSFER), stop (STOP), and error 
handling (ERROR). The function and role of each state 
are as follows:
3.2.1 Initialization state (InIT)

The initialization state is the starting state of the system. 
In this state, the SPI module sets various initial param-
eters of the system, including clock polarity (CPOL), 
clock phase (CPHA), clock division factor (div_factor), 
and other parameters. These parameters are read from the 
registers and configured into the corresponding control 
modules. Meanwhile, the chip select signal (CS) is pulled 
high, indicating that the SPI module is in an inactive state. 
After completing all necessary initialization operations, 
the state machine switches to the idle state (IDLE).
3.2.2 Idle state (IDLE)

When the SPI module is in the idle state, the system is in 
standby mode, waiting for an external start signal (start) 
to arrive. In this state, the clock signal maintains stable 
output, and the data registers and other control parameters 
remain unchanged. Once the start signal is detected, the 
state machine immediately switches from the IDLE state 
to the start state (START), preparing for data transmission.
3.2.3 Start state (START)

The SPI module prepares to enter data transmission mode 
in the start state. First, the chip select signal (CS) is pulled 
low, indicating the start of SPI communication. Next, the 
data registers load the data to be transmitted, and the data 
shifting operation is prepared based on the configured 
bit width and clock settings. Once the data and control 
signals are ready, the state machine transitions to the data 
transmission state (TRANSFER).
3.2.4 Data transmission state (TRAnSFER)

The data transmission state is the main working state of 
the SPI module. In this state, data is sent from the mas-
ter device to the slave device via the MOSI (Master Out 
Slave In) line, or received from the slave device via the 
MISO (Master In Slave Out) line. The shifting of data is 
performed on the rising or falling edge of the clock sig-
nal, determined by the CPOL and CPHA settings. In each 
clock cycle, data is shifted out or in bit by bit until all data 
is transmitted. After the transmission is complete, the state 
machine switches to the stop state (STOP).
3.2.5 Stop state (STOP)

After the data transmission is completed, the system en-
ters the stop state. In this state, the chip select signal (CS) 
is pulled high again, indicating the end of data transmis-
sion. Meanwhile, the SPI module sets the transmission 
completion flags (tx_done and rx_done) to indicate that 
the current transmission process has been successfully 
completed. At this point, the system returns to the idle 
state (IDLE), waiting for the next transmission request.

4. Simulation and Verification

4.1 Basic Functionality Verification

4.1.1 Set the rst signal to reset the module and check 
the initialization state (InIT).
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Fig. 1 InIT state
As shown in Figure 1, when the rst signal is pulled high, 
the state enters the INIT state, and information such as 
cpol, cpha, and div_factor is written into the registers. The 
chip select signal is pulled high, waiting for the start state, 

at which point it is pulled low to trigger the communica-
tion.
4.1.2 Configure div_factor, cpol, and cpha, and observe 
the generation of the SPI clock.

Fig. 2 Configurable parameters in the INIT state
As shown in Figure 2, when the division factor is set to 4 
and both cpol and cpha are set to 0, the SPI clock signal is 
generated as illustrated in the figure.
4.1.3 Activate the start signal and verify the transition 
from the IDLE state to the START state.
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Fig. 3 START state
As shown in Figure 3, after entering the IDLE state, the 
state switches to START upon detecting that the start sig-
nal is pulled high after one clock cycle. In this state, the 
shift register is initialized, the transmission data is written 
into the shift register, and the length of the transmission 

data is written into the register. The tx_done and rx_done 
signals are pulled low, indicating that the transmission is 
not yet complete.
4.1.4 Send data via MOSI output and check the data 
shifting operation in the TRAnSFER state.

Fig. 4 MOSI signal in the TRAnSFER state
As shown in Figure 4, with both cpol and cpha set to 0, 32 
bits of data, “10101010 10101010 10101010 10101010,” 
are transmitted on the rising edge of the clock.
4.1.5 Receive data via MISO input and verify that the 
data is correctly shifted into the data_out register.
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Fig. 5 MISO signal in the TRAnSFER state
As shown in Figure 5, with both cpol and cpha set to 0, 32 
bits of data are received on the MISO line along the fall-
ing edge of the clock.

4.1.6 After completing the transmission, check the 
STOP state and confirm that the tx_done and rx_done 
flags are set.

Fig. 6 STOP State
As shown in Figure 6, after the data length decreases to 0, 
the tx_done and rx_done signals are pulled high, and the 
state transitions to STOP.

4.2 Multi-mode Testing
Testing Objective: Verify the operation of SPI under dif-
ferent combinations of CPOL and CPHA, ensuring that 
data is correctly transmitted in all modes
4.2.1 Mode0(cpha=0 cpol=0)
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Fig. 7 Mode 0
As shown in Figure 7, in this mode, data is transmitted on 
the rising edge and received on the falling edge, and the 

clock signal is low during the idle state.
4.2.2 Mode1(cpha=1 cpol=0)

Fig. 8 Mode 1
As shown in Figure 8, in this mode, data is received on 
the rising edge and transmitted on the falling edge, and 
the clock signal is low during the idle state.
4.2.3 Mode2(cpha=0 cpol=1)
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Fig. 9 Mode 2
As shown in Figure 9, in this mode, data is received on 
the rising edge and transmitted on the falling edge, and 

the clock signal is high during the idle state.
4.2.4 Mode3(cpha=1 cpol=1)

Fig. 10 Mode 2
As shown in Figure 10, in this mode, data is transmitted 
on the rising edge and received on the falling edge, and 
the clock signal is high during the idle state.
In conclusion, through simulation and verification, the 
design of the SPI module fully meets expectations and all 
functions have been successfully implemented.

5. Discussion
The practical significance of this study lies in the imple-
mentation of a configurable SPI module, which enhances 
the flexibility and adaptability of embedded systems in 
communication protocol design. It reduces the need for 
hardware redesigns and improves development efficiency. 
This module has broad potential for future applications, 

particularly in fields such as IoT devices, industrial au-
tomation, and sensor networks, where it can effectively 
meet diverse data communication requirements. Fur-
thermore, this design contributes to the advancement of 
embedded systems towards greater flexibility and higher 
performance, providing an efficient and reliable solution 
for complex embedded application scenarios.

6. Conclusion
This report provides a detailed explanation of the design 
and implementation process of the configurable SPI hard-
ware module, covering the background and significance of 
the project, system design, module implementation, and 
simulation and verification. It comprehensively demon-
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strates all aspects of the SPI module. Through register 
configuration, the SPI module achieves dynamic adjust-
ments for clock frequency, data bit width, clock phase 
(CPHA), and clock polarity (CPOL), significantly improv-
ing the adaptability and generality of the hardware.
In the module implementation, this study meticulously 
designed key modules such as clock signal generation, 
data transmission, state machine control, and register con-
figuration, ensuring system stability and efficiency. The 
module exhibited excellent functionality and stability un-
der different operating conditions through simulation and 
verification of various modes. The simulation results were 
fully consistent with expectations, confirming the correct-
ness and reliability of the design.
The successful realization of this project not only address-
es the fixed configuration limitations of traditional SPI 
hardware but also provides a flexible solution for the data 
communication needs in various application scenarios. 
The module operates stably across multiple frequencies, 
data bit widths, and communication modes, demonstrating 
strong potential for engineering applications.
Future work will focus on further optimizing the module’s 
performance, including improving timing accuracy, reduc-
ing power consumption, and implementing and testing on 
actual hardware. Overall, this project provides an innova-

tive and practical solution for SPI communication design 
in embedded systems, with significant engineering appli-
cation value and broad prospects for further development.
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