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Abstract:
This paper explores the application of the Fourier series 
in mathematical analysis and its significant impact 
on scientific fields such as signal processing and heat 
conduction. The study emphasizes the utility of Fourier 
series in decomposing complex functions into simpler 
trigonometric components, which facilitates the analysis 
of periodic functions. A primary focus is on the series’ 
role in approximating square waves in signal processing, 
demonstrating its effectiveness despite challenges like 
the Gibbs phenomenon. Additionally, the Fourier series 
is applied to solving the heat equation, where it models 
the evolution of temperature distribution over time in 
a medium. Techniques to improve convergence and 
mitigate oscillations, such as corrected Fourier series and 
summation methods like Cesàro and Fejér summation, 
are discussed to enhance the accuracy of approximations 
in cases with discontinuities. The results underline the 
Fourier series’ versatility in representing and analyzing 
both smooth and discontinuous functions, showcasing its 
importance in theoretical and applied mathematics.

Keywords: Fourier series, Signal processing, Heat con-
duction.

1. Introduction
The Fourier series is a powerful mathematical tool 
that has become essential in various fields, particular-
ly in physics, engineering, and applied mathematics, 
for analyzing and solving problems involving peri-
odic functions. Originating from Fourier’s work on 
heat conduction, this series allows the decomposition 
of complex functions into simpler sine and cosine 
components, which can then be more easily analyzed 
and manipulated [1]. Its applications extend to ar-
eas such as signal processing, quantum mechanics, 
and digital signal analysis, making it invaluable for 

handling functions that are otherwise challenging to 
represent analytically [2]. One of the key advantag-
es of the Fourier series is its ability to approximate 
functions with high precision, especially when they 
exhibit periodic behavior [3]. Even functions with 
discontinuities can be analyzed using Fourier series, 
although they may present challenges like the Gibbs 
phenomenon, which causes oscillations near points 
of discontinuity [4]. Techniques such as corrected 
Fourier series and summation methods, like Cesàro 
and Fejér summation, have been developed to miti-
gate these oscillations and improve the convergence 
of the series [5,6].
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In this research, the author focuses on two main applica-
tions of Fourier series: signal processing and heat con-
duction. Signal processing often involves decomposing 
signals into their frequency components to analyze or re-
construct them effectively, with Fourier series being used 
extensively for square wave approximations and to under-
stand phenomena like the Gibbs phenomenon [1]. In heat 
conduction, the Fourier series is crucial in solving the heat 
equation, enabling a detailed examination of how tem-
perature distributions evolve over time [1]. Recent studies 
have also highlighted the application of Fourier series in 
climate analysis, specifically in analyzing temperature 
and sunshine patterns. For example, the use of harmonic 
analysis to study the seasonal temperature variation in Ni-
geria has demonstrated the effectiveness of Fourier series 
in predicting climate patterns over time [7]​. By breaking 
down the temperature profile into sinusoidal components, 
the Fourier series provides insights into the dynamics of 
heat transfer within a medium.
This study is illustrating the versatility and effectiveness 
of Fourier series in these applications, highlighting their 
role in approximating complex functions and solving dif-
ferential equations. These examples will demonstrate the 
impact of Fourier series on both theoretical analysis and 
practical problem-solving in scientific fields.

2. Method
This research explores the applications of Fourier series 
and its importance in scientific fields like signal process-
ing, heat conducting, and mechanical vibrations [1]. In 
mathematical way of decomposition of Fourier series, the 
author firstly explores the Fourier series by viewing it as 
an expression of a periodic function f x( ) . The Fourier 

series expresses the f x( )  as a sum of sine and cosine 
terms [1]. The general form of Fourier series is:

	 f x a a cos nx b nx( ) = + +
1
2 0 1∑∞

n n n= ( ) ∑
n

∞

=1
sin ( ) � (1)

Here, a0  represents the average value of the function, and 

an  and bn  are Fourier coefficient that measure the contri-
bution of each sine and cosine function. These coefficients 
are calculated as follows:

a f x cos nx dx b f x nx dxn L n L= =
L L
1 1∫ ∫− −

L L( ) ( ) , sin( ) ( ) � (2)

These equations form the fundamental theorem for ap-
proximating complex waveforms by summing sinusoidal 
components [3]. One of the primary applications of Fouri-
er series is in signal processing where it helps in analyzing 
and choosing signals [1]. For signal processing, the con-

cept of square wave is a good example to show how Fou-
rier series works in signal processing. Suppose that there 
is a square wave − ≤ ≤1 1f x( )  with length of 2 2L = π  

from π  to −π . Because the function is odd, a a0 = =n 0 , 

and b f x dxn L=
L L
2 ∫−L ( )sin  

 
 

n xπ . This equation can be 

reduced to:

	 b f x nx dxn = π
2 ∫π−π ( )sin ( ) � (3)

Because f x( )  is odd, the integral over the interval can be 
split into two equal parts from 0 to π :

	 b nx dxn = π
4 ∫π0 sin ( ) � (4)

For odd n , ∫π0 sin (nx) =
π
2 . Then, the Fourier coefficients 

for odd n  are bn = n
4
π

. For even n , bn = 0 . So, the Fou-

rier series for the square wave is f x nx( ) =∑∞
n=1 n

4
π

sin ( ) . 

It can be expanded by summing the first few terms to ap-
proximate the square wave. For example, the first 3 terms,

	 f x x x x1 ( ) = + +
π π π
4 4 4sin sin 3 sin 5 .( )

3 5
( ) ( ) � (5)

In addition, the first 8 terms are

13 15

f x x x x2

4 4
π π

(

sin 13 sin 15 .

) = +…+ + +

(
π π π
4 4 4sin sin 9 sin 11

x x) +

( )

(
9 11

)

( ) ( )
� (6)

Graphing these functions (see Fig. 1) will give a visual 
image. It is shown that the function is more like the square 
wave as interpreting more terms.
For another example of Fourier series’ application, the 
heat conduction, the heat equation can be solved by using 
the Fourier series. Suppose that there is a one-dimensional 

heat equation for a rod of length L is: 
∂u x t(

∂t
, )

=  

α
∂2u x t
∂
(
x2

, ) [1]. The u x t( , )  is the temperature distribu-

tion, and α  is the thermal diffusivity constant [1]. The 
boundary conditions are: u x t u L t( , , 0) = =( ) . Suppose 

the initial temperature distribution u x f x( ,0) = ( )  is giv-
en. The solution to the heat equation is expressed as Fou-
rier sine series:

	 u x t A e( , sin) =∑
n

∞

=1
n

 
 
 

n xπ
L

−α 
 
 

n
L
π 2

t
� (7)
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Here, An  are the Fourier coefficients:

	 A f x dxn = L L
2 ∫0

L ( )sin . 
 
 

n xπ � (8)

For a given initial temperature distribution f x( ) , compute 

the coefficients An . For example, if f x x L x( ) = −( ) , 
then:

	 A x L x dxn = −
L L
2 ∫0

L ( )sin  
 
 

n xπ � (9)

Summing the series gives the total displacement at any 
time t :

	 u x t A cos e( , ) =∑
n

∞

=1
n

 
 
 

n xπ
L

−α 
 
 

n
L
π 2

t
� (10)

At t = 0 , this series sums to f x( ) , and as t →∞ , the 
higher modes decay due to the exponential factor, leading 
to a uniform temperature [1].

Fig. 1 Illustrations of the two functions that mimic the square wave. The f1  is the blue line, 
and f2  is the red line.

Another consideration of Fourier series is the summation 
of it. The method of summing Fourier series, especially 
when approximating functions or solving partial differen-
tial equations such as the heat equation, involves several 
key mathematical tools and techniques [5]. Fourier series 
expansion is a key step in analyzing any periodic function. 
To represent a function f x( ) , it can be expressed as a se-
ries of sine and cosine terms or, in modern notation, as 
complex exponentials. Given a periodic function, the 
function can be decomposed into its trigonometric compo-
nents by Fourier series expansion. This process involves 
calculating the Fourier coefficients, which reflect the con-
tribution of each sine and cosine term to the overall be-
havior of the function

a f x cos nx dx b f x nx dxn L n L= =
L L
1 1∫ ∫− −

L L( ) ( ) , sin .( ) ( )

� (11)
These coefficients are determined by performing a pe-
riodic integral over the product of the function and the 
corresponding sine or cosine term. The convergence of 
the Fourier series is critical in determining how well the 

series approximates the original function. For continuous 
and periodic functions, pointwise convergence of the se-
ries is usually guaranteed except for points of discontinu-
ity. However, for functions with discontinuous points, the 
Gibbs phenomenon occurs, oscillations near the point of 
leapfrog discontinuity, which can be seen in signal pro-
cessing applications such as square wave approximation 
[5]. The goal of summation methods is to address these 
issues and provide meaningful approximations even for 
functions that are not perfectly smooth. There are several 
summation methods that aim to improve the convergence 
of Fourier series, especially in cases where traditional 
convergence is insufficient or fails. The two main sum-
mation techniques used are the Cesàro summation and the 
Fejér summation, which aim at smoothing the oscillations 
and improving the convergence of the series, especially 
around discontinuities. In the Cesàro summation, the con-
vergence is improved by taking the average of the partial 
sums of the Fourier series; the Cesàro summation does not 
use the partial sums directly but calculates the average of 
these sums up to a certain number of terms [8]. This tech-
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nique is particularly effective for summing the Fourier se-
ries of discontinuities because it reduces oscillations and 
more accurately represents functions near discontinuities 
[5]. The Fejér summation method, which is closely related 
to the Cesàro summation method, provides an even great-
er improvement in convergence, especially when dealing 
with functions with rapidly changing or sharp discontinu-
ities. By applying the Fejér method, the oscillations near 
the discontinuities are further smoothed, allowing a more 
accurate approximation of the function. The effectiveness 
of any summation method depends on its ability to con-
verge to the correct function. Locally, the properties of the 
function play an important role in determining whether 
the Fourier series converges at a particular point. For ex-
ample, functions with discontinuities require specialized 
summation methods to deal with Gibbs phenomena [5]. 
On a global scale, the overall behavior of a function in 
its domain is crucial to ensure that the series is summed 
correctly over the entire domain. This global convergence 
is particularly important in problems such as heat transfer, 
where the Fourier series provides a uniform solution over 
time, leading to a consistent temperature distribution. The 
role of the Fourier series is important when solving the 
heat equation because it decomposes the initial tempera-
ture distribution into sinusoidal components. Over time, 
the high-frequency components decay exponentially, 
leaving only the low-frequency components. The Fourier 
series solution of the heat equation captures this behavior, 
where the temperature distribution changes with time. The 
decay of the higher order terms ensures that the tempera-
ture eventually becomes uniform throughout the object, 
demonstrating the effectiveness of Fourier series in model-
ing thermal diffusion. The convergence of the summation 
methods is governed by various conditions that ensure that 
they are effective in summing Fourier series. Hille’s work 
on Fourier series highlights the importance of both local 
and global convergence, emphasizing that the properties 
of the function at a particular point and throughout the 
domain are crucial for effective summation. These condi-
tions determine whether a particular summation method 
is (F) efficient, converges to the correct sum at successive 
points, or (L) efficient, converges almost everywhere [5].

3. Result
In the application of Fourier series to the two problems—
signal processing (square wave approximation) and heat 
conduction—the results show the powerful versatility of 
Fourier series in both fields. By decomposing a function 
into simpler sinusoidal components, Fourier series pro-
vide a method of approximating complex phenomena and 
offering insights into their behavior, particularly through 

summation techniques.
Signal processing often involves reconstructing a sig-
nal from its various components, and a square wave is a 
common example used to illustrate Fourier series. When 
applying a Fourier series to approximate a square wave, 
each additional sine or cosine term improves the approx-
imation. Rapid oscillations near discontinuities, known 
as the Gibbs phenomenon, are a hallmark of this process 
[9]​. This effect occurs because adding sinusoidal com-
ponents to approximate the properties of a function with 
abrupt changes (such as a square wave) includes infinite 
harmonics (triangular components) that extend infinitely. 
The Gibbs phenomenon is particularly interesting be-
cause, while the oscillations near the jump point become 
smaller as more terms are added to the Fourier series, they 
never completely disappear. This phenomenon reflects the 
limitations of the Fourier series in dealing with discon-
tinuous functions, even though the overall approximation 
of the function improves as more terms are included. The 
uniform convergence of the Fourier series guarantees 
that the approximation gets closer and closer to the actual 
function, with the error being minimized as the number of 
terms increases [3]. This is particularly important in digi-
tal signal processing, where the approximation of a signal 
often involves capturing a complex waveform with mini-
mal error.
The second problem that Fourier series solves involves 
heat conduction, governed by the heat equation. In a phys-
ical scenario such as a rod with an initial temperature dis-
tribution, the Fourier series allows this initial distribution 
to be decomposed into harmonics, allowing the tempera-
ture distribution at any subsequent time to be predicted. 
The Fourier coefficients An  capture the amplitude of each 
harmonic and are essential for reconstructing the tempera-
ture function. For heat conduction, the exponential decay 
of higher modes shows how Fourier series simulate the 
loss of heat over time. Initially, the temperature distribu-
tion is very similar to the original distribution at t = 0 , but 
along with the time t →∞ , the higher harmonics de-
crease, resulting in a uniform temperature. This reflects 
the basic physics of heat diffusion: heat moves from hotter 
areas to cooler areas, eventually reaching equilibrium [5]. 
The exponential decay rates of higher-order terms account 
for the rapid smoothing of temperature differences, mak-
ing Fourier series a valuable tool for solving heat conduc-
tion problems.
Fourier series summation plays a crucial role in under-
standing convergence and the validity of Fourier series 
approximations [5]. The ability to handle discontinuities 
in square wave approximations and smooth decays in heat 
conduction problems demonstrates the flexibility of Fou-
rier series. When studying functions with discontinuities, 
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such as square waves, it is necessary to use generalized 
summation methods, such as the Cesàro summation, 
which provides a more reliable approximation by con-
sidering the average of the partial sums. This improves 
the convergence behavior and reduces visible oscillations 
near discontinuities. Similarly, for heat conduction, the 
summation method ensures that the approximation of the 
temperature distribution at any point in time converges to 
the true solution, especially when higher-order terms de-
cay with time. The effectiveness of Fourier series in repre-
senting heat diffusion is related to this summation process, 
whereas more terms are added, the series can effectively 
represent the physical system.
Despite its broad applicability, this research acknowledges 
several limitations of using Fourier series for function ap-
proximation and analysis. One significant limitation is its 
struggle with discontinuous functions, as evidenced by the 
persistent Gibbs phenomenon, which causes oscillations 
near points of discontinuity. While summation methods 
like Cesàro and Fejér can reduce these effects, they do 
not eliminate them, leading to inaccuracies in cases with 
sharp transitions. Another limitation is that Fourier series 
are best suited for periodic functions, and their perfor-
mance degrades when approximating aperiodic or non-pe-
riodic signals. The need for an infinite number of terms to 
achieve high accuracy in complex functions can also pose 
computational challenges, particularly in real-time ap-
plications where speed and efficiency are crucial. Future 
research can focus on integrating alternative mathematical 
approaches that complement the Fourier series in han-
dling non-periodic functions and reducing computational 
costs. Techniques like wavelet transforms and the devel-
opment of hybrid models that combine Fourier series with 
machine learning algorithms could offer more efficient 
solutions for analyzing complex signals. Additionally, ex-
ploring new summation methods or correction functions 
specifically designed to tackle the Gibbs phenomenon 
might further enhance the series’ accuracy in approximat-
ing discontinuous waveforms.

4. Conclusion
The study demonstrates the powerful versatility of Fou-
rier series in both theoretical and practical applications, 
particularly in signal processing and heat conduction. By 
decomposing complex functions into simpler sinusoidal 
components, Fourier series provide an effective method 
for analyzing and approximating periodic phenomena. In 
signal processing, the series allows for the detailed recon-
struction of waveforms, exemplified by its application in 
approximating square waves, where each additional term 
refines the accuracy despite the limitations posed by the 

Gibbs phenomenon. Similarly, in solving the heat equa-
tion, the Fourier series proves essential for understanding 
the evolution of temperature distribution over time, high-
lighting its capability to model thermal diffusion processes 
effectively. Furthermore, the study highlights the impor-
tance of summation techniques like Cesàro and Fejér sum-
mation in improving the convergence of Fourier series, 
especially for functions with discontinuities. These meth-
ods help to mitigate oscillations near discontinuities, en-
hancing the series’ accuracy in approximating real-world 
signals and physical phenomena. The research confirms 
that, while the Fourier series has limitations when dealing 
with non-smooth functions, its adaptability through cor-
rected series and advanced summation techniques ensures 
its continued relevance in mathematical and engineering 
applications. In conclusion, the Fourier series remains a 
fundamental tool in both applied and theoretical contexts, 
offering robust solutions for a wide range of problems in 
fields like digital signal processing, heat transfer, and be-
yond. Its ability to approximate complex waveforms and 
solve differential equations underpins much of modern 
analysis, making it indispensable for advancing people’s 
understanding of periodic and quasi-periodic systems.
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