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Abstract:
Fourier series has always been a very key part of infinite 
series problem, not only can solve many difficult partial 
differential equations problems, but also has extremely 
important applications in signal processing, thermodynamic 
statistical physics, quantum physics and other disciplines. 
Based on the basic mathematical analysis knowledge such 
as integral, this paper focuses on the theoretical basis of 
Fourier series and its application and extension in solving 
infinite series sums. The main part of the paper will focus 
on the derivation of mathematical formulas, accompanied 
by text explanations and the author’s thinking. In this 
paper, the author proves the convergence theorem and the 
discriminant method of practical significance, and applies 
the theoretical knowledge to the concrete calculation of 
series. At the same time, the author has also found many 
problems, and from different angles to explore the possible 
ways to solve the problem of series. These basic calculation 
ideas and results are instructive to the application of 
Fourier series in other fields.

Keywords: Fourier series; Convergence theorem; Parse-
val equation.

1. Introduction
In mathematical analysis, the expansion and calcula-
tion of series is always an extremely important prop-
osition. Fourier series is particularly classical and 
important here. The discussion of such series is not 
only of mathematical interest, but also has a strong 
physical background. It is an indispensable mathe-
matical tool in engineering technology, especially in 
radio communication and digital processing. In view 
of the periodic phenomenon in many scientific and 
technological problems, scientists usually adopt the 
idea of Fourier series, which can decompose a rela-
tively complex periodic wave into a series of simple 

harmonics with different frequencies, so as to solve 
the problem.
In the initial stages of the Fourier series, beginners 
can clearly see that the Fourier series has important 
applications in ordinary differential equations and 
wave equations, especially in the solution of bound-
ary value problems and initial value problems. Many 
complex PDEs are difficult to solve directly, but by 
using the Fourier series and decomposing the com-
plex functions in the equation into sums of sine and 
cosine, the solution process can be simplified [1]. 
With the development of technology, its applications 
in physics are gradually emerging. One important 
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application of the Fourier series and is signal recon-
struction. Any periodic signal (such as electrical signals, 
audio signals) can be decomposed into a sum of sine and 
cosine waves by the Fourier series. This sum not only 
helps people understand the composition of the signal, 
but also allows people to approximate the reconstruction 
of the signal by taking the first few terms of the sum [2]. 
In addition, application of Fourier series in quantum me-
chanics involves the representation of wave functions and 
the transformation of momentum space. In quantum me-
chanics, behavior of particles is often described by wave 
functions, which can be expanded in terms of sine waves 
of different frequencies by the Fourier series. Fourier 
expansion of the wave function can also be transformed 
into a representation in momentum space, thus providing 
convenience for analyzing the distribution of particle mo-
mentum [3]. In addition to these, the Fourier transform 
has many other applications [4,5].
The subsequent part of the paper will mainly introduce the 
theoretical basis of the Fourier series and several calcula-
tion methods for the sums of series. The author will, based 
on the basic form of the Fourier transform, explore the 
convergence issue of the Fourier series through ingenious 
calculation methods and present the fundamental methods 
for determining its convergence. Simultaneously, the au-
thor will also attempt to prove a representative equation in 
the Fourier theory - the Parseval’s equation, as well as its 
generalization and application in diverse circumstances. 
Subsequently, the author will enumerate multiple distinct 
and representative examples of solving the sums of series, 
solve these problems by applying the basic theoretical 
methods just introduced, and concurrently compare them 
with other possible approaches.

2. Methods and theory

2.1 Convergence of Fourier series
For a function f , the Fourier expansion is [6]

 f x a cosnx b nx( ) = + +
a
2

0 ∑
n

∞

=1
( n n sin )  (1)

with

 a f x cosnxdxb f x nxdxn n= =
π π
1 1∫ ∫π π

− −π π( ) ( )sin  (2)

To be sure, this series is determined by function f , but to 
make sense of it, the paper need to discuss its conver-
gence. The author shall introduce this series

 S x a coskx b kx( 0 ) = + +
a
2

0 ∑
k

n

=1
( k k sin .)  (3)

By bringing in the expression of ak  and bk  shown in Eq. 
(2), Eq. (3) can be further simplified as

 S x f x cosk x x dx( 0 0) = + −
π
1 1∫π−π ( ) 

 
 2 ∑

k

n

=1
( )  (4)

B y  u s i n g  t r i g o n o m e t r i c  i d e n t i t i e s 

1/ 2 sin / 2sin+ = +∑
k

n

=1
coskx n x 

 
 

1
2 2

x ,  It  is concluded 

that

 S x f x dx( 0 ) = π
1 ∫π−π ( )

 
 
 
  
 

sin

2sin

 
 
 

n x x+ −

1
2

1
2

(x x

(

− 0 )

0 )
 (5)

Taking periodicity into account, the integral expression is 
obtained as

S x f x t f x t dx( 0 0 0) = + + −
π
1 ∫π−π ( ( ) ( ))

sin

2sin

 
 
 

n t+

2
t

1
2  (6)

This important integral is called the Dirichlet integral and 
is the origin for the discussion of Fourier series conver-

gence, function sin / 2sin 
 
 

n t+
1
2 2

t  is called the Dir-

ichlet core [7]. At the same time, with the help of Rie-
mann-Lebesgue lemma ( f  can be integrated and 

a b s o l u t e l y  i n t e g r a t e d ) ,
n
lim f x cosnxdx
→+∞
∫b

a ( ) = 0  

and
n
lim f x nxdx
→+∞
∫b

a ( )sin 0= , the paper can get the local-

ization theorem of Fourier series: Whether the Fourier se-
ries of f  converges at point x0  depends only on the be-

havior of f  near point x0 . On this basis, various methods 
of judging point convergence are also established.
For example, a classical method of identification called 
Dini theorem: f R∈ −[ , ]π π  For certain real number s , let

 φ (t f x t f x t s) = + + − −( 0 0) ( ) 2  (7)

If there is δ > 0 such that the function φ (t t)?  is integrable 

and absolutely integrable on [0,δ ] , then the Fourier se-

ries of f  converges to s  at x0 .
Based on Dini theorem, the paper would have other reli-
able theorems: If the function f  of period 2π  is piecewise 

differential on [−π π, ] , then the Fourier series of f  con-

verges to ( f x f x( 0 0+ + −0 0 / 2) ( ))  at every point x0 , 

and in particular at the continuous points of f , it converg-

es to f x( 0 ) . Therefore, as long as f  has a first derivative 

on [−π π, ] , it can be expanded into a Fourier series, and 
from this point of view, the Fourier series is much better 
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than the power series. The point convergence of Fourier 
series is a very difficult problem, the author can only use 
the existing limited methods to solve some series sum 
problems.

2.2 Parseval Equation
To deal with more complex problems in series sums, the 
author also needs to introduce Parseval equation. This 
equation comes from the square mean convergence of the 
Fourier series. For a given f  and a positive integer n , the 
paper would like to figure out that what φ  polynomial 

T xn k k=∑
k

n

=0
α φ ( )  makes the norm

  f T f x T x dx− = −n a n∫b ( ( ) ( ))2  (8)

takes the minimum, which also means the squared mean 
error is minimum. After expanding, Eq. (8) can be further 
simplified as

    f T f c c− = − + −n k k k
2 2∑ ∑

k k

n n

= =0 0
( α )2  (9)

It follows that if and only if αk k= =c k n( 0,1, , ) , 

 f T− n
2  takes the minimum value:  f c− =∑

k

n

=0
k kφ

2

 f c2 2−∑
k

n

=0
k .  And tha t  g ives  Besse l  inequal i ty 

∑
k

n

=0
c fk

2 2
≤  , When the inequality is equal, it is just the 

Parseval equation

 ∑
k

n

=0
c fk

2 2=   (10)

In the traditional Fourier transform, Parseval equation is 
that

 a
2
0
2

+ + ≤∑
k

n

=1
(a b f x dxk k

2 2 2)
π
1 ∫π−π ( )  (11)

After having Parseval equation, the relationship between 
the Fourier series and the original function is much clear-
er: f R∈ −2 [ π π, ] , an  and bn  are Fourier series of f  with 

respect to the system of trigonometric functions, so f  can 
be approximated by the partial and square average of its 
Fourier series, i.e., the Parseval equation.
Furthermore, the author shall write the Parseval equations 
for f g+  and f g−  respectively,

∑
π

n

1

∞

=1

∫

(

π
−

(

π

a b

(

n n n n

f x g x dx

+ + +

(

α β

)

)

+ = +

2 2(

( ))2

) )

(a0 0+
2
α )2

 (12)

∑
π

n

1

∞

=1

∫

(

π
−

(

π

a b

(

n n n n

f x g x dx

− + −

(

α β

)

)

− = +

2 2(

( ))2

) )

(a0 0+
2
α )2

 (13)

By subtracting the two formulas Eq. (12) and Eq. (13), the 
Parseval equation that generalizes to two different func-
tions could be given

 
π
1 ∫π−π f x g x dx a b( ) ( ) = + +

a0 0

2
α ∑

n

∞

=1
( n n n nα β )  (14)

Using the conclusion Eq. (14) just now, the term-by-term 
integral theorem of Fourier series can be proved: 

f R∈ −2 [ π π, ] ,  I t s  F o u r i e r  s e r i e s  i s f x( ) a
2

0 +

∑
n

∞

=1
(a cosnxn + b nxn sin ) . For any interval [ , ]a b  contained 

in [ , ]−π π ,

∫ ∫ ∫b b b
a a a n nf x dx dx cosnx nx dx( ) = + +

a
2

0 ∑
n

∞

=1
(α β sin )  (15)

It is worth noting that this theorem states that the Fourier 
series of f  can be integrated terms by terms regardless of 
whether it converges or not, which is a special property of 
Fourier series.

3. Application
Fourier series expansions and their associated Parseval 
equations have important applications in finding series 
sums. Here are some typical examples.

3.1 Calculate ∑
n

∞

=1 n
1

p  with p  be Even
First, the Fourier series of x  on [−π π, ]  is calculated by 
the basic formula of Fourier expansion

 x nx=∑
n

∞

=1

2 1(−
n
)n−1

sin  (16)

Then, according to (x ' x2 ) = 2  and f' x kb coskx( ) ∑
k

∞

=1
( k −  

ka kxk sin )  and combined with the convergence theorem 

mentioned in section 2, an expansion of x2  can be ob-
tained.

 x cosnx x2 = + ∈ −
π
3

2

4 , ,∑
n

∞

=1

(−
n
1
2

)n

[ π π ]  (17)

Put x = π  in Eq. (17) and then get that ∑
n

∞

=1 n
1

2 =
π
6

2

. Then 

u s e  a a b n0 = = − = =
π
3

2

, 4 1 , 0, 1,2, ,n n( )n cosnx
n2   a n d 
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Parseval equation 
π
1 1 2 16∫π−π x dx4 = +

2 3
 
 
 

π 2 2

∑
n

∞

=1 n4 . Thus 

the problem is solved: ∑
n

∞

=1 n
1

4 =
π
90

2

.

As the same, for function f x x x( ) = ∈ −3, ,( π π ) , its Fou-
rier expansion is

 x n x3 2 2= − − ∈ −2 1 6 , , .∑
n

∞

=1
( )n ( π π π) sin

n2

nx [ ]  (18)

U s i n g  t h e  P a r s e v a l  e q u a t i o n
π
1 ∫π−π x dx6 =

∑
n

∞

=1

 
  
2 1 6(− −)n ( π 2 2n )

n
1

3

2

 and its simplification 
7
2π 6 =  

∑
n

∞

=1

 
 
 

4 48 144
n n n
π π

2 4 6

4 2

− + and combined with ∑
n

∞

=1 n
1

2  and 

∑
n

∞

=1 n
1

4 , the answer is clear: ∑
n

∞

=1 n
1

6 = 945
π 6

.

In fact, the mathematical definition of the Riemann ζ  
function was originally a sum of p-series, which is defined 
as follows: a complex number s, the actual part >1 ,

 ζ (s) =∑
n

∞

=1 n
1

s .  (19)

It can also be expressed as ζ (s dx) =
Γ −(

1
s e)
∫0
∞ x

x

s−1

1
.Over 

the region { : ( ) 1}s Re s > , this infinite series converges 
and becomes a holomorphic function. Euler considered 
the case of s being a positive integer in 1740, and Cheby-
shev extended this to s >1 . Bornhard Riemann realized 
that the ζ  function can be extended by analytical exten-

sion to a holomorphic function ζ (s)  defined over the 

complex field ( , 1)s s ≠ . This is also the function studied 
by the Riemann conjecture. A more general answer can be 
obtained by further applying the residue method: 

∑
n≠0 n p dz e

1 2
p p z( p z= = − =2,4,6, 0) π i d z

! 1

p p  
 
 2π −

 [8]. At 

the same time, the paper can also discuss more about the 

generalization of P-series ∑
n

∞

=1 (n a2 2k k±

1

)m  [9].

3.2 Caculate ∑
n

∞

=1

(
2 1
−
n
1)
−

n−1

In this case, direct computation is obviously not feasible, 
and the author need to consider the Fourier expansion of 

f x sgnx( ) = =




1 0
0 0
x
x
>
<

. Its Fourier expansion is an = 0  

and b nxn = =
π π
2 2∫π0 sin

1 1− −(
n

)n

. Therefore, it is calcu-

lated that

 f x sgnx( ) =  
π
4∑

n

∞

=1

sin 2 1(
2 1n

n x
−
− )  (20)

B y  c o n v e r g e n c e  t h e o r e m ,  w h e n  0 < <x π  

π
4∑

n

∞

=1

sin 2 1(
2 1n

n x
−
− )

= =sgnx 1 . And by putting x = π / 2 in, 

the equation is proved: ∑
n

∞

=1

(
2 1 4
−
n
1)
−

n−1

=
π . It can be seen 

from this problem that mastering the Fourier expansion of 
basic functions is crucial to the calculation of series sums.

3.3 Other Applications

3.3.1 Series 1

For x∈(0,2π )  and a ≠ 0 , prove that

 eax = +
e acoskx k kxax

π
− −1 1 sin 

 
 2a k a∑

k

∞

=1
2 2+

 (21)

It is easy to think of expanding eax  over (0,2π )  as a Fou-
rier series

a e nxdx

π
a e

n

(
(

= = =

n a

2

2 2

π π
a

1 1

π

+

2

−

∫
0

π

1

ax

)
)

cos
e a nx n nxax ( cos sin

n a2 2+
+ ) 2

0
π

 (22)

b e nxdx

= −

n = =

π
a e
π π
1 1

(
(n a

2

∫
0

π

2

2 2

aπ

+

ax

−

sin

1)
)  

e a nx n nxax ( cos sin
n a2 2+

− ) 2
0
π

 (23)

The answer can be obtained by substituting the above Eq. 
(22) and Eq. (23) into the formula of Fourier expansion. 
Reader needs to pay special attention to the integration 
techniques used in the calculation, and at the same time, 

using this equation, the value of the series ∑
n

∞

=1 n a2 2+
1  can 

be found.
3.3.2 Series 2

For 0 < <a π  and define function f x( ) = 
0,

1, ,
a x≤ <

x a<
π

, 

the question is to find the sum of the series: ∑
n

∞

=1

sin
n

2

2

na  
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and ∑
n

∞

=1

cos na
n

2

2 .

It is clear that

 f x cosnx( ) 
π π
a na
+∑

n

∞

=1

2sin
n

 (24)

With a a b0 = = =
2 2sin
π π
a na, , 0n nn

. According to Parseval 

equation Eq. (11) and Question 3.1, the answer is that

 ∑
n

∞

=1

sin
n

2 2

2

na a a
=

π
2
−  (25)

 ∑ ∑ ∑
n n n

∞ ∞ ∞

= = =1 1 1

cos na na a a
n n n

2 2 2 2

2 2 2= − = −
1 sin π π

6 2
−  (26)

3.3.3 Series 3

The question in mind is that for 0 < <a π , prove that

 ∑
n

∞

=1
(− = − < <1 2 .)n−1 cosnx x

n
ln cos x 
 
 2

( π π )  (27)

Expanding ln cos 
 
 

2
2
x  over (−π π, )  as a Fourier series, 

it is calculated that the coefficients

 
a ln cos dx ln lncos dx

= − =

0 0

2 2 0

= = +

ln lncosxdx

π π
1 2∫ ∫π π

−

π

π

4 ∫0

π
2

 
 
 

2 2 2
2 2
x x

 (28)

= + + + =

=

a ln cos cosnxdx ln cos d nxn

(

n

= =

1

− −

π

n n
1 1

π π
1 2

π

∫

)n n

π
0

∫ ∫

− −1 1

π π
−

sin sin

π

∫π0

cos

nx

 
 
 

   
   
   

1 1
2 2

2 2 sin

 
 
 

2
x

∑ ∑
k k

 
 
 

n n

= =1 1

2
x
2 2
x x

coskx coskx dx

dx

−

n

1

0

( )

 (29)
In addition, bn = 0 . Go one step further and replace x  
with x +π , there will be

 ∑
n

∞

=1

cosnx x
n

= < <ln x 
 
 

2sin 0 2 .
2

( π )  (30)

After seeing the examples in Sec. 3.3, the reader should 
have a rudimentary understanding of more complex top-
ics. Solving such problems requires proficiency in Fourier 
expansion.

4. Conclusion
In the previous part of the paper, the author discussed the 
basic content of Fourier series sum in detail. The author 

first gives the convergence theorem and Dini theorem, 
and then extends other reliable discriminant methods. Af-
ter that, the Parseval equation is derived from the square 
mean convergence, and the term-by-term integral theorem 
of Fourier series is given. In the third part, the author lists 
several representative classical examples, p-series summa-
tion, staggered series summation and more complex and 
challenging examples. On the basis of Fourier series, it 
also introduces summation techniques from other angles, 
which is of great reference value and triggers readers to 
think. In the process of proof and calculation, the author 
still found many problems. For example, the point con-
vergence of Fourier series is an extremely difficult prob-
lem, and it is difficult to make effective progress through 
simple methods. In the early days of research, scholars 
mostly cited examples of divergence, which is not an or-
dinary problem. At the same time, the authors also found 
that solving series through Fourier series actually depends 
very much on proficiency and skill. This requires the read-
er to be proficient in the Fourier expansion of the correla-
tion function and the technique of function integration. 
This inspired researchers to further explore the solution of 
series sums from more angles and more general solution 
processes.
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