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Abstract:
Markov Chain Monte Carlo (MCMC) methods combine 
the probabilistic framework of Markov chains with 
Monte Carlo sampling to address complex, high-
dimensional systems. Markov chains model systems with 
memoryless transitions, while Monte Carlo methods use 
random sampling to approximate intricate distributions. 
Together, these methods offer powerful tools for a range 
of applications. In particle technology, MCMC models 
separate processes like mixing, grinding, and classification, 
allowing engineers to optimize designs and predict system 
behaviors. MCMC also plays a critical role in Bayesian 
inference by facilitating sampling from complex posterior 
distributions. Algorithms such as Metropolis-Hastings 
and Gibbs sampling enable MCMC to approximate these 
distributions, making it indispensable for parameter 
estimation in statistical modeling. This paper explores 
MCMC’s foundations, its operational principles, and its 
applications in particle technology and Bayesian inference. 
MCMC’s adaptability and precision make it essential in 
both engineering and data science, where it continues 
to advance the study and management of complex 
probabilistic systems.

Keywords: Markov chain Monte Carlo, Metropo-
lis-Hastings Algorithm, Monte Carlo method.

1. Introduction
Markov chains are a mathematical framework used 
to describe systems consisting random variable that 
transition between different states. It was discovered 
by a Russian mathematician Andrey Markov through 
studying the Markov process as an extension from 
Poisson process in the early twentieth century. Mar-
kov chains are distinguished by their memoryless 
property, showing that the future state of the system 
depends solely on its current state, without influence 

from sequence of past states. This defining character-
istic, known as the Markov property, makes Markov 
chains especially useful for simplifying complex sys-
tems, and has led to their broad application in fields 
such as economics, market forecasting, engineering, 
and the natural sciences [1].
One familiar example of the application of Markov 
chains is the predictive text feature in digital plat-
forms, which, recall that how Google predicts the 
next word in people’s sentence on Gmail, based on 
the words one has already typed. This prediction 
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mechanism applies the principles of Markov Chains and 
effectively boost the efficiency in digital communication. 
Markov Chain method extends to many sophisticated 
computational techniques or algorithms to address types 
of problems. One of the significant extensions of Markov 
Chains is the Monte Carlo method, which takes its name 
from the Monte Carlo Casino [2]. The Markov Chain 
Monte Carlo (MCMC) method relies on random sampling 
to approximate complex mathematical problems. It is a 
class of algorisms that is used to explore probability dis-
tributions that are complicated and highly dimensional. 
It is widely spread nowadays due to its characteristics of 
efficiency, easiness, and inherent randomness.
Markov chains offer a foundational framework for ana-
lyzing systems based on state transitions, while the Monte 
Carlo method enhances this framework through the in-
troduction of random sampling. Together, these methods 
form the MCMC approach, which has become integral to 
statistical modeling with applications spanning various 
fields in computational science [3]. The following sections 
will examine the principles underlying MCMC and its 
practical applications on particle technology and Bayesian 
inference.

2. Monte Carlo Methods: Concept and 
Operation

2.1 Monte Carlo Method
Monte Carlo methods comprise a set of algorithms that 
rely on random sampling to approximate numerical out-
comes. It is particularly used in the context of problems 
involving probability distributions and integrals. Monte 
Carlo methods work by generating random samples from 
a distribution and using these samples to approximate 
complex quantities such as integrals or expectations. As 
the number of samples grows, the accuracy of the ap-
proximation improves, gradually converging toward the 
expected value according to the law of large numbers [4].
Monte Carlo integration is a specific application of Monte 
Carlo methods used to approximate integrals, especially 
when dealing with high-dimensional spaces. Traditional 
numerical integration methods become computationally 
expensive in such cases, suffering from what is known 
as the “curse of dimensionality”. However, Monte Carlo 
methods remain computationally feasible because their 
accuracy depends only on the number of samples rather 
than the dimensionality of the problem. By randomly 
sampling from the distribution and averaging the results, 
Monte Carlo integration provides an effective approach to 
estimating complex integrals. The estimate of the integral 

becomes more accurate as the number of samples increas-
es.

2.2 Markov Chain Monte Carlo Methods
One of the key features of MCMC is the use of Markov 
chains to generate samples that approximate the desired 
probability distribution over time. By iterating over possi-
ble states and using transition probabilities, MCMC algo-
rithms converge to a stationary distribution, which rep-
resents the target distribution. For a better understanding 
of MCMC, it is essential to know the properties of the 
Markov chain that used. In MCMC algorithms, Markov 
chains are constructed using a transition kernel K , which 
is a mechanism that describes the conditional probability 
distribution for the next state X n+1 , given the current state 

X n  [5]. This allows the algorithm to evolve from one state 
to another based on these probabilities, gradually building 
an approximation of the target distribution. A typical ex-
ample of this is the Random Walk process, which is for-
mally defined as:
 X Xn n n+1 = + ?  (1)

where each subsequent state  X n+1  is determined by adding 

a random perturbation ?n  to the current state X n . By iter-
ating through such transitions, MCMC algorithms ensure 
that the Markov chain eventually stabilizes and converges 
to the stationary distribution, allowing for an effective ap-
proximation of complex probability distributions in 
high-dimensional spaces.
After knowing the mechanism behind the MCMC, one 
question remaining: how exactly does MCMC work? A 
typical discrete example follows the following steps, first 
a starting distribution Π(0) , a one-dimensional vector of 
probabilities that sum to 1.

2.3 Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm, first introduced by 
Metropolis et al. in 1953 and later generalized by Hastings 
in 1970, is a foundational method within the MCMC fam-
ily. The algorithm generates candidate states from a pro-
posal distribution and determines their acceptance or re-
jection using an acceptance probability, which guides the 
Markov chain to converge toward the target distribution. 
This acceptance probability is derived from the concept 
of reversibility (or detailed balance), a condition ensuring 
that the system will eventually stabilize to the desired dis-
tribution. The key advantage of the Metropolis-Hastings 
algorithm is its flexibility, allowing it to sample from a 
wide range of distributions by appropriately selecting the 
proposal function and acceptance criteria .
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The Metropolis-Hastings algorithm aims to produce a se-
quence of states that align with a specified target distribu-
tion P x( ) . The core of Metropolis-Hastings algorithm its 
acceptance-rejection mechanism. It starts with an initial 
state x0 , then proposes a new state xn+1  and set it as x'  

using a proposal distribution q x' x( | ) . The algorisms then 
calculate the acceptance probability α ( , )x x' :

 α (x x' min, 1,) =
 
 
 

π
π
(
(
x' q x x'
x q x' x)
)

( | )
( | )

 (2)

I f  t h e  p r o p o s a l  d i s t r i b u t i o n  i s  s y m m e t r i c  ( i .
e., q x x' q x' x( | ( | )) = ), then the formula is simplified as:

 α (x x' min, 1,) =
 
 
 

π
π
(
(
x'
x)
)  (3)

The algorithm then draws a random number u  from the 
uniform distribution U (0,1) . If u≤α , the candidate is 

accepted, and the next state is set as xn+1 =  x' . Otherwise, 
the candidate is rejected, and the next state remains the 
same x x xn n+1 = = . This process makes it more likely to 
accept states that have a higher chance in the target distri-
bution, while those with lower chances are rejected more 
often. It helps steer the Markov chain toward regions 
where the probabilities are higher.
Another powerful MCMC method is Gibbs sampling, 
which simplifies the sampling process by breaking down a 
multivariate distribution into its conditional distributions. 
At each step, the algorithm samples from the conditional 
distribution of each variable while holding the other vari-
ables fixed. Gibbs sampling is especially efficient when 
the conditional distributions are known and can be easily 
sampled. This method is often used in Bayesian inference 
and other applications involving complex joint distribu-
tions, where direct sampling is difficult .

3. Applications

3.1 Application in Particle Technology
The MCMC methods are widely used in particle technolo-
gy to model complex and stochastic particulate processes. 
Processes like grinding, mixing, and classification are 
inherently unpredictable due to the mesoscopic nature of 
particle interactions. This randomness stems from the in-
terplay between large-scale system behavior and individ-
ual particle dynamics. MCMC is effective for modeling 
these processes because it can handle the randomness in 
particle behavior, providing insights that are useful for op-
timizing systems and improving process efficiency.

One major application of MCMC in particle technology 
is modeling residence time distributions (RTD) in mix-
ing equipment. Berthiaux et al. emphasize that Markov 
chains are well-suited for simulating particle flow through 
discrete states [6,7]. In this model, each state represents a 
stage within a mixer or reactor. By assigning probabilities 
to particle transitions between these states, MCMC mod-
els can predict RTD. Understanding RTD is crucial for 
assessing mixing efficiency and flow patterns. In continu-
ous mixing processes, for example, MCMC can simulate 
particle movement across different zones within a mixer. 
This allows engineers to pinpoint bottlenecks and adjust 
design parameters to improve performance  .
MCMC also aids in modeling processes that involve 
particle size reduction, such as grinding. In grinding, par-
ticles break in discrete events triggered by forces rather 
than continuously. This behavior aligns well with the 
MCMC framework, where each grinding event represents 
a transition between states defined by particle size. Using 
MCMC, engineers can model the distribution of particle 
sizes over time, a critical factor for quality control in in-
dustries like pharmaceuticals and cement manufacturing.
Another key application of MCMC is in classification and 
separation processes. These systems often sort particles by 
properties such as size or density. MCMC-based models, 
as Berthiaux and colleagues explain, capture these clas-
sification dynamics by defining transition matrices [6,7]. 
These matrices reflect the probability of a particle moving 
from one size category to another. This method allows 
MCMC to account for the non-linear and multiscale be-
haviors often observed in classification processes .
Finally, MCMC’s adaptability for multidimensional mod-
eling makes it particularly useful in particle technology. 
Many systems require analysis of multiple properties, 
such as particle size and velocity, simultaneously. Extend-
ing Markov chains into multidimensional space, MCMC 
models can represent particle flow and distribution in 
complex setups like fluidized beds or milling systems. 
This approach enables a more complete analysis of parti-
cle behavior, supporting process optimization and system 
design improvements.

3.2 Application in Bayesian Inference
One of the most significant applications of MCMC meth-
ods is in Bayesian inference. Bayesian methods rely on 
the computation of posterior distributions, which are hard 
to compute due to complex integrals over high-dimen-
sional spaces. MCMC techniques provide a powerful tool 
for sampling from these posterior distributions, making it 
possible to conduct Bayesian analysis even when the inte-
grals involved cannot be solved exactly.
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In Bayesian statistics, the posterior distribution reflects 
the updating beliefs about parameters after data obser-
vation, combining prior information with the probability 
of the observed data. The challenge in many real-world 
problems, especially those involving multivariate distribu-
tions, is that direct sampling from the posterior is difficult 
or impossible. This is where MCMC methods, such as the 
Metropolis-Hastings and Gibbs sampling, come into play 
[8].
The Metropolis-Hastings algorithm helps to sample from 
a complex posterior by generating candidate points from 
a proposal distribution and either accepting or rejecting 
these points according to their relative likelihoods. This 
iterative process allows the Markov chain to eventually 
converge to the target posterior distribution. On the other 
hand, Gibbs sampling works by breaking down multivari-
ate distributions into conditional distributions, simplifying 
the sampling process when full conditional distributions 
are available. For instance, in a typical hierarchical Bayes-
ian model, where different parameters may have interde-
pendencies, MCMC methods are indispensable. These 
methods sample each parameter conditionally, often using 
Gibbs sampling to efficiently navigate the complex pa-
rameter space. By iterating over parameters and drawing 
samples based on the conditional distributions, MCMC 
techniques can construct a sequence of samples which 
represent the joint posterior distribution.
MCMC methods are powerful in Bayesian hierarchical 
models and mixture models, where the complexity of the 
relationships between parameters and data makes exact 
inference impossible. For example, in Bayesian mixture 
models, MCMC enables the inference of both the number 
of components and the parameters of each component, 
overcoming the difficulty of high-dimensional integration 
[8] .

4. Conclusion
MCMC methods have become invaluable for addressing 
complex, probabilistic challenges across various fields. 
Combining the memoryless transition properties of Mar-
kov chains with the sampling power of Monte Carlo meth-
ods, MCMC is well-suited to model high-dimensional, 
stochastic systems. In particle technology, MCMC effec-
tively models processes like grinding, mixing, and clas-

sification by capturing the discrete, random behavior of 
particles. This application enables engineers to optimize 
equipment design, improve process efficiency, and predict 
system performance more accurately. In Bayesian infer-
ence, MCMC has transformed statistical analysis by mak-
ing it feasible to sample from complex posterior distribu-
tions. Through algorithms such as Metropolis-Hastings 
and Gibbs sampling, MCMC enables the approximation 
of distributions that are otherwise intractable, supporting 
robust parameter estimation and decision-making. The 
versatility and adaptability of MCMC make it a core tool 
for managing complexity in both engineering and data 
science applications. As MCMC methods continue to 
advance, their contributions to scientific and industrial 
research will only deepen, offering refined models and en-
hanced accuracy in probabilistic analysis.
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