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Abstract:
The  quan tum Four i e r  t r ans fo rma t ion  has  been 
demonstrated to be a useful tool in dealing with quantum-
mechanical problems. This paper discusses how quantum 
Fourier transformation is applied in finding the period of 
functions within Shor’s algorithm, allowing the algorithm 
to be much more efficient in factorizing large integers than 
classic algorithms. This paper also discusses how Grover’s 
algorithm uses the concept of harmonic process, where 
amplitude amplification is likened to harmonic oscillation 
for improving the efficiency of searching unsorted data 
base. The paper further explores the application of 
harmonic analysis in quantum error correction, particularly 
in stabilizer codes. The paper also introduces wavelet 
analysis as an alternative approach for detecting and 
correcting localized quantum errors. Finally, the paper 
extends the discussion into the potential future directions 
of harmonic analysis in quantum computing, such as 
extending Fourier transformation to non-abelian groups 
and using spherical harmonics in quantum algorithms 
which may optimize current quantum algorithms and solve 
currently unsolved quantum questions.

Keywords: Fourier Analysis, Harmonic Analysis, Quan-
tum Computing.

1. Introduction
Quantum computing is an increasingly new area of 
study that has been developed less than 50 years. 
There is a rapid increase in interest in this field be-
cause quantum computing had shown its ability to 
solve complexed problems much faster than classical 
computers. The power of quantum algorithms lies 
in their ability to use the principles of quantum me-
chanics, such as superposition and entanglement, al-
lowing them to perform computations in parallel and 
solve problems with exponential speedup. A crucial 

component of these quantum algorithm is harmonic 
analysis, particularly the use of Fourier transform, 
and wavelet transform.
Harmonic analysis a field of study in mathematics 
that studies representing signals and functions as 
combinations of basic waveforms, which plays a 
central role in quantum algorithms. This paper inves-
tigates the use of harmonic analysis in several key 
quantum algorithms, including Shor’s algorithm for 
large integer factorization and Grover’s algorithm for 
unsorted database search which uses harmonic anal-
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ysis to achieve significant computational advantages over 
other classical algorithms. In addition to the application 
in quantum algorithms, harmonic analysis is also applied 
in quantum error correction. Quantum error correction is 
one of the major challenges in quantum computing and a 
significant part for any quantum technologies. This paper 
explores how harmonic analysis and wavelet techniques 
can be employed in stabilizer codes and error correction 
protocols to identify and correct errors in quantum sys-
tems.
By exploring these areas, the paper seeks to provide a 
comprehensive overview of how harmonic is used in 
quantum computing, surpassing other classical algo-
rithms. The paper also highlights future directions in the 
field, such as extending harmonic analysis to non-abelian 
groups and employing spherical harmonics for improving 
efficiency in quantum chemistry and material science.

2. Background Information

2.1 Harmonic Analysis and Fourier Analysis
Harmonic analysis is a branch of mathematics that studies 
representing functions and signals as the superposition 
of simple waves. This is an extend of Fourier series and 
Fourier transforms, providing tools for analysing func-
tions and operators. Harmonic analysis is very important 
in many fields including signal processing, quantum me-
chanics and number theory [1].
One of the core concepts of harmonic analysis is Fourier 
series and Fourier Transform. Fourier series states that for 
any periodic function f x( )  with period 2π  can be repre-
sented as an infinite sum of sines and cosines

	 f x a a cos nx b nx( ) = + +0 1∑∞
n n n= ( ( ) sin ,( )) � (1)

where the coefficients an  and bn  are defined as

a f x cos nx dx b f x nx dxn n= =
π π
1 1∫ ∫π π

− −π π( ) ( ) , sin .( ) ( ) �(2) 

Fourier transform states that for non-periodic functions 
f x L( )∈ 1 () , the Fourier transform is defined as

	 f f x e dxˆ (ω) = ∫∞ −
−∞ ( ) i xω . � (3)

The inverse Fourier transform is defined as

	 f x f e d( ) =
2
1
π
∫∞−∞ ˆ (ω ω) i xω . � (4)

Harmonic analysis often operates within Hilbert spaces. 
For functions f g L, ∈ 2 () , define the inner product as

	 f g f x g x dx, ,= ∫∞−∞ ( ) * ( ) � (5)

where g x* ( )  denotes the complex conjugate of g x( ) . 
There are some very important properties of Harmonic 
Analysis. The first one is linearity, that the Fourier trans-
form is a linear operator:
	 F af x bg x af bg{ } .( ) + = +( ) ˆ (ω ω) ˆ ( ) � (6)
The second one is the convolution theorem, that the Fou-
rier transform of a convolution is the pointwise product of 
Fourier transform:
	 F f g f g{ * ,} = ˆ (ω ω) ˆ ( ) � (7)

where ( f g x f t g x t dt* .)( ) = −∫∞−∞ ( ) ( )  The third proper-

ty is Parseval’s identity, that the total energy of a signal is 
preserved under the Fourier transform:

	 ∫ ∫∞ ∞
−∞ −∞f x dx f d( ) 2

= ˆ (ω ω)
2

. � (8)

2.2 Wavelet Analysis
Another very important aspect of harmonic analysis is 
wavelet analysis. Wavelet analysis allows to decompose a 
function into components that are both localized in time 
and frequency. Unlike the Fourier transform, which rep-
resents signals as sum of sine and cosine waves with glob-
al frequency components, wavelet analysis uses functions 
called wavelets that are localized in both time and scale, 
making it particularly useful for signals that have transient 
or non-stationary characteristics. Wavelet analysis in-
volves wavelet transform, which mainly involves 2 trans-
formations. The first one is continuous wavelet transform 
(CWT) of a function f t( )  is defined by

	 W a b f t dt( , ) = ∫∞−∞ ( ) 1
a
ψ  
 
 

t b−
a

� (9)

where f t( )  is the input signal, ψ (t )  is the mother wave-
let, a  is the scale parameter which controls the frequency 
and b  is the translation parameter, which controls the 
time shift. Another transformation is discrete wavelet 
transformation (DWT), which is defined by

	 W f t t dtj k j k, ,= ∫∞−∞ ( )ψ ( ) , � (10)

where j  and k  are integers indices that represent scale 

and translation and ψ ψj k, (t t k) = −2 2j j/2 ( )  is the scaled 

and translated wavelet function. The DWT produces a hi-
erarchical representation of the signal, which allows a sig-
nal to be represented at different levels of detail using 
scaling (low-pass) and wavelet (high-pass) coefficients by 
using multi-resolution analysis [1].

3. Algorithms and Quantum Error 
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Correction

3.1 Quantum Fourier Transform in Shor’s Al-
gorithm
Shor’s algorithm is an algorithm that aims to solve prob-
lems of large integer factorization. Shor’s algorithm 
has many implications in cryptography, particularly for 
cryptosystems that rely on the hardness of factoring large 
numbers, which include the most widely used RSA sys-
tem.
An important process in Shor’s Algorithm is to find the 
period of the function f x a modN( ) = x  where the period is 

the smallest positive integer r  such that a modNr ≡1 . 
Quantum Fourier Transform is the core of finding such r . 
In order to find the period, the first step is to prepare a su-
perposition of all possible input x? , which can be written 

as 1
Q
∑Q

x=
−
0
1 x? , where Q  is a power of 2 such that 

Q N> 2 . After this, Shor’s algorithm evaluates f  for all x  
and stores the result in the second register. This changes 
the quantum states to

	 1
Q
∑Q

x=
−
0
1 x f x> >( ) . � (11)

Since f  is periodic with the period r , one can rewrite the 
state into

	 1
Q ∑y

r

=

−1

0
∑k

(

=

Q y

0

− −
r

1)

y kr f y+ ( ) . � (12)

When measuring the second register, the superposition 
collapses to a state where all x  correspond to the ob-
served f y( ) . Thus, the state becomes

	 1
M
∑k

M
=
−
0
1 y kr+ , � (13)

where M =
 
  
(Q y− −

r
1) . Shor’s algorithm now applies 

the Quantum Fourier Transformation. The Quantum Fou-
rier Transformation (QFT) is defined as

	 QFT x e z(| )  .=
1
Q ∑

Q

z=

−

0

1 2π
Q
ixz

� (14)

Apply ing  Quantum Four ie r  Trans format ion  to 
1
M
∑k

M
=
−
0
1 y kr+ , the state transforms to

	 1 1
M Q
∑ ∑k x

M Q
= =
− −
0 0
1 1
 
  
 

e z
2π i y kr z(

Q
+ )

? , � (15)

which can be simplified into

	
QM
1 ∑ ∑Q M

z k= =
− −
0 0
1 1e e z

2 2π π
Q Q
iyz ikrz 
  
 

. � (16)

Notice ∑k
M
=
−
0
1 e

2π
Q
ikrz

 is a geometric series, so

	 ∑k
M
=
−
0
1 e

2π
Q
ikrz

=
1

1

−

−

e

e

2

2

π

π

Q

Q

irMz

irz . � (17)

The magnitude of this expression is optimized when 

e
2π

Q
irz

≈1 . e
2π

Q
irz

=1  when z mQ r= / . This tells people 

that the value of z  leading to constructive inference are 
multiples of Q r/ . After z  is measured, it can be seen that 
z mQ r≈ /  for some integer m , meaning that z Q m r/ /≈
, thus deducing the period r  [2].
In some cases, the function has a sparse frequency spec-
trum, meaning that the Fourier coefficients of the function 
are mostly zero. This kind of function is common in peri-
od-finding problems. For these functions, instead of calcu-
lating the entire Fourier transform, which would take a 
time complexity of O NlogN( )  operations in the classical 

case and O n( 2 )  in the quantum case where N = 2n , 

Sparse Fourier Transform reduces the time complexity 
into O klogN( ) where k  is the sparsity (the number of 
significant Fourier coefficient). Sparse Fourier Transform 
includes the randomized subsampling and aliasing of the 
original signal x n[ ]  of length N . Mathematically it is 

x n x n n SS [ ] = ∈{ : },[ ]  for k N= … −0,1, , 1  and S  is a 

subset such that S N⊂ … −{0,1, , 1}  with S m=  where 
m N . After this, Sparse Fourier Transform algorithm 
would apply chirp filters or Gaussian filters to the subsam-
pled data. These filters are used to supress noise. Chirp 
function is of the form Chirp n e( ) = i nα 2

 and Gaussian fil-

ter is of the form G n e( ) = 2
−
σ
n2

2 . Finally, given the filtered 

and subsampled signal x nS [ ] , one can compute the 
non-zero or significant Fourier coefficient by [2]

	 X k x n eˆ [ ] =∑
n S∈

[ ]
−2π

N
ikn

. � (18)

3.2 Harmonic Process in Grover’s Algorithms
Grover’s algorithm is an algorithm that provides a faster 
solution to unstructured searching problems than classical 
algorithms. In classical algorithm, the time complexity of 
finding a marked element in an unsorted database of N  
elements is O N( ) . While the time complexity of Gro-
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ver’s algorithm is O N( ) . The main idea of Grover’s al-

gorithm is to amplify the amplitude of the marked state by 
a series of quantum operations.
Mathematically, the amplitude amplification in Grover’s 
algorithm can be interpret by the rotations in the Hilbert 
space. Let’s assume that there is an unsorted database with 
N  elements, and one wants to search a particular element 
w? . In Grover’s algorithm, the algorithm first initialize 

an equal superposition of all possible state s?

	 s x? .=
1
N ∑

N

x=

−

0

1

� (19)

Grover’s algorithm then applies an oracle operation Ow , 

which marks w  by

	 O xw =




− =
x ifx w
x ifx w

≠
. � (20)

This operation can be understood as a reflection across the 
x w≠ ?  states in the Hilbert space. After applying the ora-

cle, Grover’s algorithm uses Grover iteration to amplify 
the probability amplitude of the marked state. The state 
s?  can be broken down into the component in the direc-

tion to w?  and the component in the direction orthogonal 

to w? , denoting it as r ? . r ?  represents all other states. 

One can express s?  as s w r? ? ?= +α β  where α  is the 

amplitude of the target state and β  is the amplitude of all 
other states. The Grover iteration consists of 2 operations: 
Ow  and diffusion operator D . The combination of Ow  

and D  perform a rotation in the plane spanned by w?  

and r ?  with the angle θ = 2 sinarc  
 
 

1
N

. The ampli-

tude amplification process is similar to a harmonic oscilla-
tion mathematically. After each Grover iteration, the am-
plitude of | ?w  increases while the amplitude of other 

states decreases. The probability of measuring the w?  af-
ter k iterations is

sin2  
 
 
 
 
 

k + 1
2
θ . The probability of w?  would increase 

as the algorithm applies Grover iterations until the angle 

reaches π
2

. If too many iterations are performed such that 

the angle surpass π
2

, the probability of w?  would de-

crease. Grover’s algorithm essentially uses the concept of 
repeated reflections and amplifications, which is a type of 

harmonic process [3].

3.3 Harmonic Analysis in Quantum Error Cor-
rection
A quantum error correction algorithm is an algorithm 
designed to detect and correct errors in quantum states 
caused by the noise in quantum system. Although Quan-
tum Fourier Transform is not part of most standard error 
such as the Shor code and Steane code, it is especially 
useful in stabilizer codes. In stabilizer codes, the Quantum 
Fourier Transformation is used in the phase estimation al-
gorithm to find the error syndrome [4].
The condition for applying stabilizer error correction is 
that different errors must produce distinguishable syn-
dromes and that errors within the same equivalence class 
do not affect the logical state. Mathematically, the condi-
tion of applying stabilizer error correction can be written 
as

	 ψ ψ δi k l j ij klE E C† = , � (21)

where |ψ i  and |ψ j  are logical code states, El  and Ek  
are error operators from the set of possible errors that the 
code is to correct, δ ij  is the Kronecker delta, ensuring that 
the inner product between 2 different logical states is zero, 
and Ckl  is a constant depending on El  and Ek .

In stabilizer code, given a state |ψ ∈C  where C  is the 
common eigenspace of a set commuting Pauli operator 
(stabilizers) and an error E  where E  is a Pauli operator, 
one can measure the stabilizers which would return either 
1 or -1. If it is 1, then it indicates that the qubit is not af-
fected by the error, whereas -1 indicates that the qubit has 
been affected by the error. If the error involves phase 
shifts, Quantum Fourier Transform is used in Quantum 
Phase Estimation which can determine the amount of 
phase shifted [5].
Besides the application of Fourier analysis in quantum 
error correction, some of the newest studies shows that 
wavelet analysis can be used in quantum error correction. 
Different from QFT, Wavelets analysis can be used for lo-
calized time-frequency analysis, which is better in detect-
ing and correcting errors that are localized both in time 
and frequency domains. In classical signal processing, 
wavelet transforms would decompose a signal at various 
scales, providing information for both time and frequency. 
Similarly, in quantum computing, wavelet transform can 
be used for analysing quantum states at different scales. 
This can detect error that are not apparent in standard ba-
sis [6].
Mathematically, a wavelet transforms of a quantum state 
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ψ  can be written as

	 ψ ψ
−

=W , � (22)

where W  is the wavelet transform operator. The operator 
W  is constructed using a set of orthonormal wavelet basis 

{ϕ j}  and scaling functions {ψ j}  such that

	 ∫ϕ ϕ δj k jk(x x dx) * ( ) = � (23)

and

	 ∫ψ ψ δj k jk(x x dx) * ( ) = . � (24)

In order to implement wavelet transforms in a quantum 
circuit, the wavelet transform need to be decomposed into 
a sequence of quantum gates, like what is done for QFT. 
For example, the discrete wavelet transform can be im-
plemented using the combination of Hadamard gates and 
controlled operations.
When an error E  acts on a quantum state ψ , the state 

becomes Eψ . By applying the wavelet transform, the 
state becomes

	 ψ ψ ψ ψ
   

E = = =WE WEW W E† , � (25)

where E WEW
 
= ?  is the error operator in the wave-

let-transformed basis. The transformed error operator E
 
 

can detect and correct localized error. For example, sup-
pose E  is a bit-flip error on qubit i , represented by the 
Pauli X  operator Xi . In the wavelet basis, the error E  
would affect specific wavelet coefficient that corresponds 
to qubit i's  scale, allowing the error to be detected and 
corrected.
The condition for successful error correction using wave-
let is similar to that of stabilizer codes but using wavelet 
basis, that is

	 ψ ψ δ ,

i k l j ij klE E C†
  =  � (26)

where ψi  and ψj  are logical code states in the wavelet 

basis, E
 

l  and E
 

k  are transformed error operators and C
 

kl  

is a constant depending on E
 

l  and E
 

k  [7].

3.4 Future Directions
Traditional quantum algorithms like Shor’s algorithm ap-
plied the QFT over abelian groups (for example  n ). Ex-
tending the abelian group into non-abelian groups could 
lead to new algorithms, optimizing existing ones. Notice 

there is already existing Fourier transform over non-abeli-
an groups. For a finite group G , the Fourier transform of 
a function f G C: →  is given by

	 f f g gˆ (ρ ρ) =∑g G∈ ( ) ( ). � (27)

Algorithms that are applied over non-abelian groups 
can solve problems like hidden subgroup problem for 
non-abelian groups, which has still remained unsolved [8].
Applying spherical harmonics could optimize algorithms 
involving rotational symmetries like problems in quantum 
chemistry and material science. Spherical harmonics are 
eigenfunctions of the Laplace operator on the sphere and 
form an orthonormal basis for square-integrable functions 
on the sphere. Quantum states representing functions on 
spheres can be easier to analyse by applying spherical har-
monics

	 ψ ,=∑∑
l 0 l

∞

= =−m

l

c Yl lm m � (28)

where clm  are coefficients and Ylm  is the spherical har-
monics.

4. Conclusion
In conclusion, this paper explores the application of 
harmonic analysis in quantum computing, outlining its 
role in various quantum algorithms and quantum error 
correction. Harmonic analysis is a very important field 
of study in representing and analyzing quantum states. 
Especially the quantum Fourier transformation, is the 
core of Shor’s algorithm for large integer factorization 
and Grover’s algorithm for searching a specific element 
in an unsorted data base. The harmonic analysis plays 
an important row in quantum computing by improving 
the efficiency of quantum algorithms and contributing to 
error correction methods. The application of the quantum 
Fourier transformation in algorithms such as Shor’s and 
Grover’s algorithm demonstrate its ability in solving com-
plex computational problems that would be a challenge 
for classical systems. Additionally, the stabilizer codes 
and possible application of wavelet transform in quantum 
error correction codes shows the capability of harmonic 
analysis in solving quantum error corrections. The future 
directions of harmonic analysis in quantum computing 
includes extending Fourier analysis to non-abelian groups 
and applying spherical harmonics to solve more advanced 
quantum problems and optimizing existing algorithms in 
fields like quantum chemistry and material science. These 
potential directions highlight the importance of harmonic 
analysis in the future of quantum computing.
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