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Abstract
This article aims to demonstrate the application of Fermat’s theorem in cryptography. With the development of 
technology, we have access to more and more information, and the necessity of encryption has also increased. As a 
mainstream public key cryptography algorithm, RSA encryption will demonstrate the application of Fermat’s theorem 
in RSA encryption in this article. To achieve this, I will introduce cryptography and Fermat’s theorem separately. Then, 
I will explain how the RSA encryption algorithm and Fermat’s theorem are applied to the RSA encryption algorithm. 
Finally, I will demonstrate it using Python. The theoretical proof and encryption process were elaborated on through 
empirical Python programming examples. Then, I will discuss whether RSA encryption is safe. Finally, I will give my 
conclusion. 
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I n t ro d u c t i o n  o f  C r y p t o g r a p h y 
(Mohamed Barakat, Christian Eder, 
Timo Hanke An Introduction to 
Cryptography )
Cryptography is a technique that ensures information 
and communication security using code. Therefore, only 
the intended recipient of the information can process it, 
preventing others from accessing the private information. 
The technologies used in cryptography mainly include:
Symmetric key cryptography: In this encryption system, 
the sender and receiver of a message use a single shared 
key to encrypt and decrypt the message. Although this 
method is efficient, sometimes receivers and senders 
cannot exchange keys safely. DES and AES are two 
members of a large family of symmetric encryption 
systems.
Hash function: Hash function is an algorithm that 
generates fixed-length hash values based on input data. 
These hash values are unidirectional transformations, 
making reverse engineering the original data difficult. 
Hash functions are used to encrypt passwords and ensure 
data integrity.
Asymmetric key cryptography, also known as public 
key cryptography, uses one encryption public key and 
one decryption private key. The sender can encrypt the 
information using the public key from the recipient, while 
the recipient decrypts the message using their private key. 
Asymmetric key cryptography solves the problem of key 
exchange in symmetric cryptography. Examples include 
RSA and Diffie Hellman.
Cryptography plays a crucial role in protecting digital 
communication, sensitive data, and privacy. It involves 
encryption and decryption processes, using a key 

to convert plaintext into ciphertext and vice versa. 
Cryptography protects data during transmission and 
storage, allowing secure communication in the presence 
of adversaries.
Fermat’s little theory
Fermat’s little theory is that if p is a prime number, 
a is an integer that cannot be divided by p, then . 
(A GENERALIZATION OF FERMAT’S LITTLE 
THEOREM Frank S. Gillespie)
Now, I will use different methods to prove this theory.
1. Using polynomial theorem
This summation is the sequence of all non-negative 
integer indices k₁ obtained by kₐ. Therefore, the sum of all 
kᵢ is n; if we represent an as the sum of 1 to the path, such 
as power (1 + 1+ 1+…1ₐ)ᵖ, we can get:
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If p is prime, kⱼ isn’t equal to p for any j, then we have:
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If kⱼ=p, we have:
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one element existing, such that kⱼ = p, made the theorem 
hold.
(Veisdal, J&oslash;rgen. “Fermat’s Little Theorem.” 
Medium, Cantor’s Paradise, 25 July 2019)
2. Modular Algorithm Proof
Proof of Fermat’s Little Theorem
If we aim to prove this theorem, we begin by establishing 
two sets:
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One set, S, contains integers from 1 to P - 1.
The other set, Sa, comprises a, 2a, 3a, and so on up to (P - 
1) * a.
Our objective is to demonstrate that the elements in set 
Sa when divided by P, yield remainders that exactly 
match another permutation of set S. In simpler terms, 
when divided by P, all elements in Sa correspond to the 
elements in set S, albeit in a different order.
We employ proof by contradiction:
Let’s assume the existence of ia and ja, where ia ≡ a (mod 
P) and ja ≡ a (mod P). On subtracting, if we find i > j such 
that (i - j) * a ≡ 0 (mod P), this leads to a contradiction, as (i 
- j) * a cannot be congruent to zero modulo P.
This step demonstrates that ai and aj cannot exist with the 
same remainder.
Therefore, when the set S is divided by P, the resulting 
set remains as 1, 2, 3, 4... up to P - 1, albeit in a different 
arrangement.
Hence, a ≡ k1 (mod P), 2a ≡ k2 (mod P), 3a ≡ k3 (mod P), 
..., (P - 1)a ≡ k(P-1) (mod P), where k1, k2, up to k(P-1) are 
mutually distinct.
With 1 ≤ ki ≤ P - 1, the product k1 * k2 * k3 * ... * k(P-1) 

equals P - 1.
Considering a ≡ k1 (mod P), 2a ≡ k2 (mod P), 3a ≡ k3 
(mod P), ..., (P - 1)a ≡ k(P-1) (mod P) and multiplying these 
congruences yields:
(P - 1)! * a^(P-1) ≡ (P - 1)! (mod P)
a^(P-1) ≡ 1 (mod P)
Thus, the proof is complete.
(Veisdal, J&oslash;rgen. “Fermat’s Little Theorem.” 
Medium, Cantor’s Paradise, 25 July 2019)
The above two methods are difficult to understand; I will 

use an easy-to-understand method to prove: the bead 
threading proof method.
Let p be a prime number and any integer prime to p. Then 
we must show that.

We have p discs and colors, so there are ap coloring 
methods.

If we divide the ap-a’s into groups of p’s, then we can 
show that the ap-a’s are divisible by p’s, which will be 
proved.
We can imagine this as a string of beads on a necklace, 
where each disc represents a bead on the necklace. No 
matter how you rotate it around the center in a plane, it 
remains the same necklace. This gives us an idea: we can 
group identical necklaces, where ‘identical’ means they 
have the same coloring after rotation, considering it as an 
approved coloring method within a group. Let’s take an 
example: assuming we have a total of seven beads, and we 
color them with at least two different colors in any order. 
Afterward, we rotate it. Each rotation results in a new 
coloring method, but the order of these colors remains the 
same. Therefore, we obtain six distinct coloring methods 
after six rotations, and the seventh rotation brings us back 
to the initial coloring. Hence, precisely seven distinct 
coloring methods belong to the same necklace. These 
methods can be grouped. It seems that we have resolved 
this proof.

For any given coloring method, it will be grouped with 
others; within that group, there are a total of P distinct 
coloring methods. In our previous example, seven distinct 
coloring methods indicated that a^P - a can be divided into 

multiple groups, each containing P elements. However, 
some might wonder if two identical coloring methods 
could exist within a single group. Or if during the rotation 
process, a particular coloring method encounters the same 
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color arrangement before returning to its initial position. 
If this were the case, then a group should not have P 
distinct coloring methods; we would need to deduct at 
least one from the total P possibilities. Now, let’s explain 
why this scenario is impossible. For simplicity, let’s label 
these discs. Subsequently, we’ll use at least two colors 
to color them easily. After coloring, let’s assume these 
discs are rotated K times and return to the exact initial 
color arrangement, using K equals three to illustrate this 
scenario.

After three rotations, if the colors match, a specific 
sequence of discs must align with another sequence. For 
instance, disc 1 aligns with disc 4, indicating their colors 
must be identical. Likewise, disc 2 aligns with disc 5, 
and disc three must match disc 6. Further, disc 4 aligns 
with disc 7, but as disc 4 is already identical to disc 1, it 
follows that disc 7 is also identical to disc 1. Then, disc 5 
aligns with disc 1, making disc 5 identical to disc 1 disc 
4, and 7 by extension. Next, disc 6 aligns with disc 2, 
making disc 6 identical to disc 2 and, therefore, to disc 5, 
disc 1, disc 4, and disc 7.
Consequently, disc 7 aligns with disc 3, implying that disc 
7 is identical to disc 3 and identical to disc 6, disc 2, disc 
5, disc 1, disc 4, and disc 7. Ultimately, we realize that 
the color arrangement of each disc is identical. However, 
we initially stipulated that at least two colors should be 
used for coloring. This discrepancy arises because if, after 
K rotations, the colors are unchanged, it implies that the 
sequence of discs repeats in cycles of length K. This is 
where the condition of P being a prime number becomes 
crucial. Since P is a prime number, no integer greater 
than one can evenly divide it; therefore, as observed here, 
cyclic arrangements cannot occur.

So, if P is not a prime number, for example, let’s say 
P equals six, then there is a possibility that a specific 

coloring method might unexpectedly repeat after rotation. 
For instance, let’s consider a scenario where, after every 
two rotations, the arrangement returns to its original state. 
In this case, for the group associated with this particular 
coloring method, there are only two distinct arrangements 
instead of forming a total of six. This explains why we 
require P to be a prime number. 

This shows that for a prime number P, there is always a 
way to distribute a^P - a distinct coloring method into 
multiple groups based on approved coloring methods. 
This completes the proof of Fermat’s Little Theorem.
the RSA encryption algorithm
I mentioned earlier that RSA encryption is asymmetric, 
requiring both public and private keys. The public key is 
public, meaning that both the encryptor and the decryptor 
have these numbers (e, n). The private key also has two 
numbers (d, n). One of the two numbers in the public key, 
n, is a number that both the encryptor and the decryptor 
have. The only confidential number is d in the private key. 
The rules for generating public key and private key are as 
follows: (Gurpreet Singh, Supriya A Study of Encryption 
Algorithms (RSA, DES, 3DES and AES) for Information 
Security )
1. Choose two prime numbers that are big enough.
2. Calculate the product of p and q as n, the number 
available for both the encryptor and the decryptor.
3. Using Euler function,  Represents the number of 
coprime with n in positive integers less than or equal to n; 
we can figure out .
4. Choose an integer e, let ), and e is coprime with ϕ(n), 
and e is a number in the public key.
5. Calculate d such that . D is a number in a private key 
that the encryptor and the decryptor cannot know.
Then, the private key consists of (d, n), and the public key 
consists of (e, n).
The process of encode and decode:
Assuming that C is the ciphertext, and M is the plaintext. 
Encryption: 
1. Convert the plaintext into an integer m, ensuring that m 
is much smaller than n. 
2.  Compute the ciphertext  c:  ,  where ^ denotes 
exponentiation and mod denotes the modulo operation. 
3. The ciphertext c is the result of encryption.
Decryption: 
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1. Receive the ciphertext c. 
2. Compute the plaintext m: . 
3. The plaintext m is the result of decryption.
For the security and reliability of encryption, p and q must 
be two extremely large prime numbers, which means that 
n is also a very large number.
Relation between encode and decode and Fermat’s little 
theory.
Now, I will prove the decryption process, . Because  and  ,   
. According to the exponentiation law of mod, . Because 
, . Because n is a very large number if we can prove that , 
then .
Therefore, now our goal changes to how to prove . 
Proving this requires using Fermat’s little theory: if p is a 
prime number, while a is an integer that cannot be divided 
by p, then . In this case, , and a=m. So,  can be transfer to . 
When n is much larger than , only when  can the equation 
be established. Therefore, . Therefore, . Now, the equation 
changes to .
The context above proves the process of decryption.
Demonstrate the process of RSA encryption using Python 
and show its relationship with Fermat’s Little Theorem.
1. We need to import the necessary modules. We need 
sympy to generate a random prime number and random 
for generating random numbers.

2. Generate the key
We need to randomly generate two prime numbers: p and q. 
Then calculate n=p*q, and  (phi), which is 

3. Generate a public key e which satisfies , and e is 
coprime with .

Because e is coprime with , e has a multiplicative inverse 
under mod φ(n).
4. Generate the private key.

We can directly calculate the private key d, using the 
mod_inverse function of sympy library, which has already 
been introduced from step 1. This step uses Fermat’s 
theory, which ensures the multiplicative inverse exists, as 
e is coprime with . 
I will explain the two steps above:
1. generate_e(phi_n): Because the public key must 
satisfies two conditions, which is , and it must coprime 
with , so we use math.gcd(e, phi_n) == 1 to check whether 
e coprime with . If we find that e satisfies the condition 
above, we can stop the loop and use that e as a public key
2. mod_inverse(e, phi_n): this step uses Fermat’s little 
theory to find the private key.
In RSA encryption, e and phi_ n must satisfy coprime, 
which means that there exists a d such that (d * e) mod φ 
(n) =1; we call this d as the inverse of multiplication under 
e mod φ (n). Using the library function mod provided by 
Python_ Inverse can directly calculate d.
5. Encryption

   Using the public key(n, e), we can calculate . In Python, 
the pow function can directly perform the modulo power 
operation.
6. Decryption

The reversion of the encryption process is the decryption 
process, and then can be calculated by using the private 
key (n, d). After this step, we can obtain the original 
plaintext message.
RSA encryption is not 100% secure.
According to Patrick nohe’s essay, is it still safe to use 
encryption? RSA encryption has two major problems. 
First, they are not really that random. Second, almost 
everyone uses the same ones. In other words, there are a 
lot of common CSPRNGs which can be easily cracked. 
These two problems will result in many public keys 
sharing a prime.
(Is it still safe to use RSA Encryption? Patrick Nohe)
According to the 2012 research paper titled “Ron was 
wrong, Whit is right”, many public keys sharing a prime 
will reduce security for the following reasons.
If two public keys have the same prime number, then that 
prime number is the public divisor. Since determining a 
greatest common divisor is much simpler than factoring a 
number prime, if someone knows this public divisor, they 
can decrypt any message sent with this public key. This 
makes RSA encryption insecure.
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(Ron was wrong; Whit is right)
The researchers tested 6.2 million public keys that people 
were using, and they cracked 12,934 of them. This means 
that RSA encryption is less than 99.8% secure (Ron was 
wrong, Whit is right)
RSA encryption hasn’t been cracking, but it is vulnerable. 
One method in a 2013 essay proposed by researchers 
helped to factor and crack nearly 13000 public keys.

Conclusion
The Fermat’s Little Theorem plays a significant role in 
RSA encryption. It can be used to check if a number 
is prime, which is crucial for key generation. I first 
introduced cryptography and then explained three different 
methods of proving the Fermat’s Little Theorem. Next, I 
described the RSA encryption algorithm and demonstrated 
the decryption process using the Fermat’s Little Theorem. 
Since most RSA encryption is employed in programs, 
I demonstrated it in Python to be more realistic and 
included explanations for each step. Finally, I questioned 
whether RSA encryption is secure by looking up citation 
examples and data.
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