
1

Dean&Francis

The Application of Fermat’s Little Theorem in Cryptography

Hengli Wang

Abstract
This article aims to demonstrate the application of Fermat’s theorem in cryptography. With the development of
technology, we have access to more and more information, and the necessity of encryption has also increased. As a
mainstream public key cryptography algorithm, RSA encryption will demonstrate the application of Fermat’s theorem
in RSA encryption in this article. To achieve this, I will introduce cryptography and Fermat’s theorem separately. Then,
I will explain how the RSA encryption algorithm and Fermat’s theorem are applied to the RSA encryption algorithm.
Finally, I will demonstrate it using Python. The theoretical proof and encryption process were elaborated on through
empirical Python programming examples. Then, I will discuss whether RSA encryption is safe. Finally, I will give my
conclusion.
Keywords: public key, private key, sharing prime, Fermat’s little theory.

I n t ro d u c t i o n o f C r y p t o g r a p h y
(Mohamed Barakat, Christian Eder,
Timo Hanke An Introduction to
Cryptography)
Cryptography is a technique that ensures information
and communication security using code. Therefore, only
the intended recipient of the information can process it,
preventing others from accessing the private information.
The technologies used in cryptography mainly include:
Symmetric key cryptography: In this encryption system,
the sender and receiver of a message use a single shared
key to encrypt and decrypt the message. Although this
method is efficient, sometimes receivers and senders
cannot exchange keys safely. DES and AES are two
members of a large family of symmetric encryption
systems.
Hash function: Hash function is an algorithm that
generates fixed-length hash values based on input data.
These hash values are unidirectional transformations,
making reverse engineering the original data difficult.
Hash functions are used to encrypt passwords and ensure
data integrity.
Asymmetric key cryptography, also known as public
key cryptography, uses one encryption public key and
one decryption private key. The sender can encrypt the
information using the public key from the recipient, while
the recipient decrypts the message using their private key.
Asymmetric key cryptography solves the problem of key
exchange in symmetric cryptography. Examples include
RSA and Diffie Hellman.
Cryptography plays a crucial role in protecting digital
communication, sensitive data, and privacy. It involves
encryption and decryption processes, using a key

to convert plaintext into ciphertext and vice versa.
Cryptography protects data during transmission and
storage, allowing secure communication in the presence
of adversaries.
Fermat’s little theory
Fermat’s little theory is that if p is a prime number,
a is an integer that cannot be divided by p, then .
(A GENERALIZATION OF FERMAT’S LITTLE
THEOREM Frank S. Gillespie)
Now, I will use different methods to prove this theory.
1. Using polynomial theorem
This summation is the sequence of all non-negative
integer indices k₁ obtained by kₐ. Therefore, the sum of all
kᵢ is n; if we represent an as the sum of 1 to the path, such
as power (1 + 1+ 1+…1ₐ)ᵖ, we can get:

ap =
k k k1 2, ,
å
 a

æ öççççè øk k k1 2, , ,
p
 a

÷÷÷÷

If p is prime, kⱼ isn’t equal to p for any j, then we have:

k k k1 2, , ,
å
 a

æççççèk k k p1 2, , , 0(mod) a)
p
º

If kⱼ=p, we have:

k k k1 1, , ,
å

¼ a

æ öççççè øk k k1 2, , ,
p
¼ ca

÷÷÷÷
º1(mod)p

one element existing, such that kⱼ = p, made the theorem
hold.
(Veisdal, Jørgen. “Fermat’s Little Theorem.”
Medium, Cantor’s Paradise, 25 July 2019)
2. Modular Algorithm Proof
Proof of Fermat’s Little Theorem
If we aim to prove this theorem, we begin by establishing
two sets:

2

Dean&Francis

One set, S, contains integers from 1 to P - 1.
The other set, Sa, comprises a, 2a, 3a, and so on up to (P -
1) * a.
Our objective is to demonstrate that the elements in set
Sa when divided by P, yield remainders that exactly
match another permutation of set S. In simpler terms,
when divided by P, all elements in Sa correspond to the
elements in set S, albeit in a different order.
We employ proof by contradiction:
Let’s assume the existence of ia and ja, where ia ≡ a (mod
P) and ja ≡ a (mod P). On subtracting, if we find i > j such
that (i - j) * a ≡ 0 (mod P), this leads to a contradiction, as (i
- j) * a cannot be congruent to zero modulo P.
This step demonstrates that ai and aj cannot exist with the
same remainder.
Therefore, when the set S is divided by P, the resulting
set remains as 1, 2, 3, 4... up to P - 1, albeit in a different
arrangement.
Hence, a ≡ k1 (mod P), 2a ≡ k2 (mod P), 3a ≡ k3 (mod P),
..., (P - 1)a ≡ k(P-1) (mod P), where k1, k2, up to k(P-1) are
mutually distinct.
With 1 ≤ ki ≤ P - 1, the product k1 * k2 * k3 * ... * k(P-1)

equals P - 1.
Considering a ≡ k1 (mod P), 2a ≡ k2 (mod P), 3a ≡ k3
(mod P), ..., (P - 1)a ≡ k(P-1) (mod P) and multiplying these
congruences yields:
(P - 1)! * a^(P-1) ≡ (P - 1)! (mod P)
a^(P-1) ≡ 1 (mod P)
Thus, the proof is complete.
(Veisdal, Jørgen. “Fermat’s Little Theorem.”
Medium, Cantor’s Paradise, 25 July 2019)
The above two methods are difficult to understand; I will

use an easy-to-understand method to prove: the bead
threading proof method.
Let p be a prime number and any integer prime to p. Then
we must show that.

We have p discs and colors, so there are ap coloring
methods.

If we divide the ap-a’s into groups of p’s, then we can
show that the ap-a’s are divisible by p’s, which will be
proved.
We can imagine this as a string of beads on a necklace,
where each disc represents a bead on the necklace. No
matter how you rotate it around the center in a plane, it
remains the same necklace. This gives us an idea: we can
group identical necklaces, where ‘identical’ means they
have the same coloring after rotation, considering it as an
approved coloring method within a group. Let’s take an
example: assuming we have a total of seven beads, and we
color them with at least two different colors in any order.
Afterward, we rotate it. Each rotation results in a new
coloring method, but the order of these colors remains the
same. Therefore, we obtain six distinct coloring methods
after six rotations, and the seventh rotation brings us back
to the initial coloring. Hence, precisely seven distinct
coloring methods belong to the same necklace. These
methods can be grouped. It seems that we have resolved
this proof.

For any given coloring method, it will be grouped with
others; within that group, there are a total of P distinct
coloring methods. In our previous example, seven distinct
coloring methods indicated that a^P - a can be divided into

multiple groups, each containing P elements. However,
some might wonder if two identical coloring methods
could exist within a single group. Or if during the rotation
process, a particular coloring method encounters the same

3

Dean&Francis

color arrangement before returning to its initial position.
If this were the case, then a group should not have P
distinct coloring methods; we would need to deduct at
least one from the total P possibilities. Now, let’s explain
why this scenario is impossible. For simplicity, let’s label
these discs. Subsequently, we’ll use at least two colors
to color them easily. After coloring, let’s assume these
discs are rotated K times and return to the exact initial
color arrangement, using K equals three to illustrate this
scenario.

After three rotations, if the colors match, a specific
sequence of discs must align with another sequence. For
instance, disc 1 aligns with disc 4, indicating their colors
must be identical. Likewise, disc 2 aligns with disc 5,
and disc three must match disc 6. Further, disc 4 aligns
with disc 7, but as disc 4 is already identical to disc 1, it
follows that disc 7 is also identical to disc 1. Then, disc 5
aligns with disc 1, making disc 5 identical to disc 1 disc
4, and 7 by extension. Next, disc 6 aligns with disc 2,
making disc 6 identical to disc 2 and, therefore, to disc 5,
disc 1, disc 4, and disc 7.
Consequently, disc 7 aligns with disc 3, implying that disc
7 is identical to disc 3 and identical to disc 6, disc 2, disc
5, disc 1, disc 4, and disc 7. Ultimately, we realize that
the color arrangement of each disc is identical. However,
we initially stipulated that at least two colors should be
used for coloring. This discrepancy arises because if, after
K rotations, the colors are unchanged, it implies that the
sequence of discs repeats in cycles of length K. This is
where the condition of P being a prime number becomes
crucial. Since P is a prime number, no integer greater
than one can evenly divide it; therefore, as observed here,
cyclic arrangements cannot occur.

So, if P is not a prime number, for example, let’s say
P equals six, then there is a possibility that a specific

coloring method might unexpectedly repeat after rotation.
For instance, let’s consider a scenario where, after every
two rotations, the arrangement returns to its original state.
In this case, for the group associated with this particular
coloring method, there are only two distinct arrangements
instead of forming a total of six. This explains why we
require P to be a prime number.

This shows that for a prime number P, there is always a
way to distribute a^P - a distinct coloring method into
multiple groups based on approved coloring methods.
This completes the proof of Fermat’s Little Theorem.
the RSA encryption algorithm
I mentioned earlier that RSA encryption is asymmetric,
requiring both public and private keys. The public key is
public, meaning that both the encryptor and the decryptor
have these numbers (e, n). The private key also has two
numbers (d, n). One of the two numbers in the public key,
n, is a number that both the encryptor and the decryptor
have. The only confidential number is d in the private key.
The rules for generating public key and private key are as
follows: (Gurpreet Singh, Supriya A Study of Encryption
Algorithms (RSA, DES, 3DES and AES) for Information
Security)
1. Choose two prime numbers that are big enough.
2. Calculate the product of p and q as n, the number
available for both the encryptor and the decryptor.
3. Using Euler function, Represents the number of
coprime with n in positive integers less than or equal to n;
we can figure out .
4. Choose an integer e, let), and e is coprime with ϕ(n),
and e is a number in the public key.
5. Calculate d such that . D is a number in a private key
that the encryptor and the decryptor cannot know.
Then, the private key consists of (d, n), and the public key
consists of (e, n).
The process of encode and decode:
Assuming that C is the ciphertext, and M is the plaintext.
Encryption:
1. Convert the plaintext into an integer m, ensuring that m
is much smaller than n.
2. Compute the ciphertext c: , where ^ denotes
exponentiation and mod denotes the modulo operation.
3. The ciphertext c is the result of encryption.
Decryption:

4

Dean&Francis

1. Receive the ciphertext c.
2. Compute the plaintext m: .
3. The plaintext m is the result of decryption.
For the security and reliability of encryption, p and q must
be two extremely large prime numbers, which means that
n is also a very large number.
Relation between encode and decode and Fermat’s little
theory.
Now, I will prove the decryption process, . Because and ,
. According to the exponentiation law of mod, . Because
, . Because n is a very large number if we can prove that ,
then .
Therefore, now our goal changes to how to prove .
Proving this requires using Fermat’s little theory: if p is a
prime number, while a is an integer that cannot be divided
by p, then . In this case, , and a=m. So, can be transfer to .
When n is much larger than , only when can the equation
be established. Therefore, . Therefore, . Now, the equation
changes to .
The context above proves the process of decryption.
Demonstrate the process of RSA encryption using Python
and show its relationship with Fermat’s Little Theorem.
1. We need to import the necessary modules. We need
sympy to generate a random prime number and random
for generating random numbers.

2. Generate the key
We need to randomly generate two prime numbers: p and q.
Then calculate n=p*q, and (phi), which is

3. Generate a public key e which satisfies , and e is
coprime with .

Because e is coprime with , e has a multiplicative inverse
under mod φ(n).
4. Generate the private key.

We can directly calculate the private key d, using the
mod_inverse function of sympy library, which has already
been introduced from step 1. This step uses Fermat’s
theory, which ensures the multiplicative inverse exists, as
e is coprime with .
I will explain the two steps above:
1. generate_e(phi_n): Because the public key must
satisfies two conditions, which is , and it must coprime
with , so we use math.gcd(e, phi_n) == 1 to check whether
e coprime with . If we find that e satisfies the condition
above, we can stop the loop and use that e as a public key
2. mod_inverse(e, phi_n): this step uses Fermat’s little
theory to find the private key.
In RSA encryption, e and phi_ n must satisfy coprime,
which means that there exists a d such that (d * e) mod φ
(n) =1; we call this d as the inverse of multiplication under
e mod φ (n). Using the library function mod provided by
Python_ Inverse can directly calculate d.
5. Encryption

 Using the public key(n, e), we can calculate . In Python,
the pow function can directly perform the modulo power
operation.
6. Decryption

The reversion of the encryption process is the decryption
process, and then can be calculated by using the private
key (n, d). After this step, we can obtain the original
plaintext message.
RSA encryption is not 100% secure.
According to Patrick nohe’s essay, is it still safe to use
encryption? RSA encryption has two major problems.
First, they are not really that random. Second, almost
everyone uses the same ones. In other words, there are a
lot of common CSPRNGs which can be easily cracked.
These two problems will result in many public keys
sharing a prime.
(Is it still safe to use RSA Encryption? Patrick Nohe)
According to the 2012 research paper titled “Ron was
wrong, Whit is right”, many public keys sharing a prime
will reduce security for the following reasons.
If two public keys have the same prime number, then that
prime number is the public divisor. Since determining a
greatest common divisor is much simpler than factoring a
number prime, if someone knows this public divisor, they
can decrypt any message sent with this public key. This
makes RSA encryption insecure.

5

Dean&Francis

(Ron was wrong; Whit is right)
The researchers tested 6.2 million public keys that people
were using, and they cracked 12,934 of them. This means
that RSA encryption is less than 99.8% secure (Ron was
wrong, Whit is right)
RSA encryption hasn’t been cracking, but it is vulnerable.
One method in a 2013 essay proposed by researchers
helped to factor and crack nearly 13000 public keys.

Conclusion
The Fermat’s Little Theorem plays a significant role in
RSA encryption. It can be used to check if a number
is prime, which is crucial for key generation. I first
introduced cryptography and then explained three different
methods of proving the Fermat’s Little Theorem. Next, I
described the RSA encryption algorithm and demonstrated
the decryption process using the Fermat’s Little Theorem.
Since most RSA encryption is employed in programs,
I demonstrated it in Python to be more realistic and
included explanations for each step. Finally, I questioned
whether RSA encryption is secure by looking up citation
examples and data.

Acknowledgment
At first, I thought that the knowledge of number theory
was useless because we don’t need to use it in real life. It
was Prof. H. L. Bray who showed me that such a simple
and seemingly impractical number theory can be so
skillfully integrated with cryptography, which made me
deeply feel the charm of mathematics and inspired me to

write an article about the use of Fermat’s Little Theorem
in RSA encryption. I will fulfill his expectations, do my
best to apply math to life, and try to bed in convenience
for mankind. Heartfelt thanks to Prof. H. L. Bray for
guiding me. I wish you all the best.

Reference
1. “Fermat’s Little Theorem.” From Wolfram MathWorld,
mathworld.wolfram.com/FermatsLittleTheorem.html?utm_
c o n t e n t = b u f f e r 4 3 6 b c & u t m _ s o u r c e = b u f f e r & u t m _
medium=twitter&utm_campaign=Buffer. Accessed 29 Aug.
2023.
2. Lenstra, Arjen K. Ron Was Wrong, Whit Is Right - IACR,
eprint.iacr.org/2012/064.pdf. Accessed 28 Aug. 2023.
3. Mohamed Barakat, Christian Eder, Timo Hanke. Rptu,
agag-ederc.math.rptu.de/~ederc/download/Cryptography.pdf.
Accessed 29 Aug. 2023.
4. nohe, Patrick. “Google Chrome Adds Support for a Hybrid
Post-Quantum Cryptographic Algorithm.” Hashed Out by The
SSL StoreTM, 18 Aug. 2023, www.thesslstore.com/blog/is-it-
still-safe-to-use-rsa-encryptio.
5. Pournaki, M. R. Generalizations of Fermat’s Little
Theorem via Group Theory, www.researchgate.net/profile/
M-R-Pournaki/publication/228636515_Generalizations_
of_Fermat%27s_Lit t le_Theorem_via_Group_Theory/
links/09e4150d54990bda04000000/Generalizations-of-Fermats-
Little-Theorem-via-Group-Theory.pdf?origin=publication_
detail. Accessed 29 Aug. 2023.
6. Veisdal, Jørgen. “Fermat’s Little Theorem.” Medium,
Cantor’s Paradise, 25 July 2019, www.cantorsparadise.com/
fermats-little-theorem-fbc88498d54e.

