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Solving ordinary differential equations using the Taylor Series

Siyao Fu

ABSTRACT
This essay will shed light on some basic knowledge about Taylor Series and ordinary differential equations and then 
detail the principle and method of using Taylor Formula to solve ordinary differential equations. After analyzing and 
demonstrating examples, this essay illustrates the feasibility and advantages of the Taylor Formula in solving ordinary 
differential equations. It points out some problems about Taylor expansion’s convergence speed and computational 
efficiency. Finally, this paper concludes with the applications of the Taylor Formula to solve ordinary differential 
equations and prospects for possible future application directions.
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INTRODUCTION

1. Background
Taylor’s formula, almost one of the most important 
contents of advanced math since Brook Taylor published 
it, was used to solve complex problems. It can also be a 
good way to solve ordinary differential equations. Solving 
an initial value problem in ordinary differential equations 
has been a classic numerical method for many years. 
Since 1966, Moore[1] has applied interval analysis to 
control truncation errors in solving differential equations 
with long Taylor series. Next, Rall [2] provides other 

applications of the Taylor series method.

2. The Foundation of Taylor Series.
Taylor expansion fits complex curves and turns them into 
polynomial equations with infinite terms. It expands the 
objective function at a certain point, uses the function’s 
local properties to approximate its overall properties, and 
constructs a new polynomial function equal to the original 
function. It transforms complex functions into multiple-
term equations to simplify calculations and obtain more 
accurate results. It is based on calculating a function’s 
derivative and higher-order derivative at a certain point. 
The formula is 
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where f’(x0), f’’(x0), and f ^n (x0) represent the first, 
second, and nth-order derivatives of f(x), respectively. 
The most common use of Taylor’s expansion is at x=0, 
with the formula: f(x)=f(0)+f’(0)(x-0)+……F n(0)/n!(x-
0)n. To solve differential equations, the function of Taylor 
Series is expanding unknown functions into series form. 
According to the need for accuracy, we can only take the 
first few terms of the expansion (the more items obtained, 
the more accurate the result is.) so that differential 
equations can become a set of linear or simple forms for 
easy solutions.

3.  The Overview of  Different ial 
Equations.
Differential equations are mathematical equations 
that describe the interrelationships between variables 
involving unknown functions and their derivatives. 
Differential equations are divided into two categories: 
ordinary differential equations and partial differential 
equations. Ordinary differential equations have only 

one unknown function, which is my topic, while partial 
differential equations have multiple functions for ordinary 
differential equations. Its general form is F(x, y, y,…,y(n)),  
where F is a function about x, y, y,…,y(n), and y,…,y(n) 
is derivative of y concerning x. In practical applications, 
differential equations are important and utilized in several 
areas, such as chemistry, physics, and biology. The 
solution of differential equations is abundant, with the 
most commonly used approximate method being Taylor 
expansion. This essay aims to discuss using the Taylor 
Formula to solve ordinary differential equations and make 
an evaluation of it.

4. The Step of Using Taylor Formula 
Solving Differential Equations.
Taylor Formula is a method that can turn unknown 
functions in differential equations into their series form. It 
can be used to solve general ordinary differential equations 
and more advanced differential equations. Concerning the 
first-order differential equation, Using the Taylor formula 
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to solve it is relatively simple due to the only one term of 
expansion, which is f(x)=f(x0)+(x-x0) f’(x0). But for the 
more advanced differential equations, we need to calculate 
the higher derivative of functions and intercept the first 
few terms of the series to obtain an approximate answer. 
The steps of using the Taylor Formula to solve differential 
equations are as follows.

4.1 Expand equation using Taylor Formula
Firstly, the Taylor Formula is performed on the functions 
appearing in ordinary differential equations at a certain 
point, transforming complex functions into simple 
polynomial sequences. Generally speaking, the more 
terms in the expansion, the better the approximation 
effect.

4.2 Determine initial conditions
Determine the initial or boundary conditions based on the 
application scenarios of ordinary differential equations. 
These conditions typically include the initial numerical 
value of the variable, the derivative value of the variable, 
and so on.

4.3 Construct an approximate answer
Using the results of the expansion of the Taylor Formula, 
construct an approximate solution sequence that satisfies 
the Taylor expansion and initial or boundary conditions. 

4.4 Solving the derivative of an approximate 
solution sequence
Using the results of the expansion of the Taylor Formula, 
solving the derivative of the approximate solution 
sequence usually requires using derivative formulas and 
recursive relationships. These derivative values will be 
used in the next integration process.

4.5 Performing integration operations
Using the derivative numerical value obtained in the 
previous step, perform an integration operation on the 
approximate solution sequence to obtain the numerical 
solution of the approximate solution sequence. (Integration 
operations can usually be performed using numerical 
integration methods such as Simpson’s law, Gaussian 
integration, etc.)

4.6 Obtaining an approximate solution
An approximate value of the original ordinary differential 
equation’s solution can be obtained based on the 
numerical solution obtained through integral operation. 
By continuously increasing the number of terms in the 
Taylor expansion mentioned above, the accuracy of the 
solution can be gradually improved.

5. Solving ordinary differential equations
5.1 Solving simple math questions.
As a case [3], I will select a simple but common question 
to solve.
Here is a simple, non-homogeneous equation.

y x y y y y¢¢ = + - =- =2 (0) 1, (0) 1 (1)
It is a little difficult if we use conventional solutions of 
differential equations. So, for people with insight, it is 
easy to associate with the Taylor Series, which matches 
the form above.
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The first and second terms meet the condition constraints 
of the equation and are brought into the corresponding 
Taylor Series in the following figure.
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But concerning second-order derivatives in the Taylor 
series, flexible handling is required. In the following 
explanation, When the second derivative of y is equal to 0, 
x is equal to 0.
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From this, we obtain the numerical value for the second 
derivative of y.
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Then, recalculate the numerical value for the third 
derivative of y in the following figure.

dx dx
y y yy

d d

¢¢¢ ¢ ¢

(
= + -

y x y y¢¢

1 2

)= + -( 2) (6)

Bringing in the previous data to obtain the numerical 
values for the third-order derivative of y.
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and so on, the answer to the non-homogeneous equation 
is obtained in the following figure, which is in the Taylor 
series form of y. 
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5.2 The following steps[4] are derived from 
zhuanlan.zhihu.com/p/433180918 by Matlab 
Fans, published in 14 November 2021. 
For initial value problems of first-order differential 
equations,
ìïïïíïïïî
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in the above equation, t0 is the initial time(known 
constant); y0 initial state(known vector); f(t, y(t)) is the 
function of time t and state y(t)(known function).
Expand the Taylor Series of the differential equation 
solution y(t) near the working point and ignore higher-
order terms above the second order:
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Because of this, the above equation can be 
simple to 

y y f y( ) ,t t t t t t t t» + - + -( k k k k k) ( ( ))( ) d
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f
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Define step size: Calculate the numerical 

value of when  :

 (13)

The derivative  can be simplified by taking partial 
derivatives for state y(t) and t, respectively.

 (14)

Record . So, the solution is 

 (15)
The above-mentioned is about the recursive form 
from y(k) toy(k+1). y(1), y(2), y(3), y(4),…,y(N)… 
can be calculated sequentially based on the recurrence 
relationship of the initial conditions. This discrete 
sequence is the numerical solution of the differential 
equation.
This example demonstrates the feasibility and usefulness 
of using the Taylor Formula to solve ordinary differential 
equations from the perspective of other researchers.

5.3
Repeated differentiation is described in many textbooks. 
However, it is useful in the context of deriving Runge-
Kutta formulas [5]
Given : y’ = f(t, y); by repeated differentiation :
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...   etc. (a big mess to find many terms in this way) 
Knowing y(ti ), we can compute
y(ti+1 ) = y(ti +k) = y(ti) + k y’(ti) + y’’(ti)+  y’’’(ti) + ...
Then select k so that the final item used is safely below 
the expected local error level. Repeat ti+1, and process 
from the initial time.

5.4 As a comparison, here is another method 
to solve ordinary differential equations: 
difference method [6].
The following application of the difference method uses 
first-order ordinary differential equations as an example.
Consider the following ordinary differential equation:
y’(x) = f(x, y(x), y(x0) = y0
Where f(x, y) is the given function, y(x) is the function to 
be solved, and x0 and y0 are the initial conditions.
We need to discretize the continuous time axis to solve 
this problem using the difference method. Assuming we 
divide the timeline into N cells with a length of h and a 
time step of x=nh, then:
y (x+h)=y (x)+hy ‘(x)+1/2h ^ 2 * y “’ (x)+.. (Taylor 
expansion)
Since we only consider the first derivative, we can 
simplify the above formula as follows:
y(x + h) = y(x) + h*y’(x)
Next, we can use the given initial conditions and the 
above difference formula to obtain the numerical solution 
of y(x) through iterative calculation. Specifically, we can 
make x=x0 and y(x0) = y,
Then use the difference formula to gradually calculate 
y(x1), y(x2), y(x3) ...y(xN).
Compared to other methods to solve ordinary differential 
equations, like the difference method, we can find that the 
Taylor Formula has advantages such as higher accuracy 
and clear mathematical significance. However, it is not as 
good as the difference method regarding computational 
complexity and stability. Consequently, When choosing a 
numerical solution, choosing based on specific problems 
and calculation conditions is necessary.

6 Convergence and Error Control of 
Taylor Series.
After the Taylor Series expansion, certain convergence 
conditions must be met to ensure convergence. Generally 
speaking, if the convergence order of the series selected 
for the expansion point is higher, the accuracy of 
expansion is higher. However, we must control the 
errors because the Taylor Series is the sum of a series of 
countless terms. The common error estimation methods 
include convergence order estimation, error estimation, 
and rapid prototyping.

7 Numerical Implementation and 
Computational Efficiency.
We need to compile the corresponding program code 
to use the Taylor Formula to solve ordinary differential 
equations. In the calculation process, I suggest we pay 
attention to the following points to improve efficiency.

7.1 Select efficient algorithms
Concerning complex problems, we need to design high-
quality and efficient algorithms to improve our efficiency.

7.2 Utilize optimized technology
Take advantage of techniques such as vectorization and 
parallelization to optimize algorithms.

7.3 Use a suitable structure of data
Using a suitable data structure to store and access data can 
reduce the calculation time.

8 Error Analysis  and Avoidance 
Methods
Some errors may occur when using the Taylor Formula 
to love ordinary differential equations. Common errors 
include rounding errors, truncation errors, initialization 
errors, etc. To reduce the occurrence of errors, the 
following measures can be taken:

8.1 Examine the logical mistakes in the 
process of calculating
When you are compiling the code, we should ensure the 
logical correctness of the calculation process.

8.2 Unit testing
For each calculation step, unit testing is required to ensure 
its correctness. Meanwhile, for some complex problems, 
numerical simulations can be used to verify.

8.3 Using fault-tolerant algorithms
For some error-prone links, fault-tolerant algorithms can 
be used to reduce the occurrence of errors.

9 Conclusion and Evaluation
This paper researches how to use Taylor Formula to 
solve ordinary differential equations. Through theoretical 
analysis and demonstration of examples, it illustrates the 
advantages and feasibility of using the Taylor Formula 
to solve ordinary differential equations. Using the Taylor 
Formula can approximate the derivative and rate of 
change of a function, thereby helping us better understand 
the local behavior of the solution.
However, the Taylor Formula also has some problems, 
such as slow convergence speed and high computational 
complexity. Therefore, further future exploration of more 
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efficient and accurate solution methods is needed.
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