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Abstract
Four-rotor UAV is a very practical and widely used UAV. In this paper, the development status and future trend of Four-
rotor UAV at home and abroad are introduced, and then the transformation matrix from ground coordinates to airframe 
coordinates is deduced by using Euler equation. In the process of dynamic modeling, the plane position reference 
coordinate system and rotation angle reference coordinate system are selected to analyze the external forces and 
moments on the body, and the linear motion equation and the angular motion equation are written in parallel. On the 
basis of UAV dynamics model, the classical PID control method is used to control the attitude of the inner loop and the 
position of outer loop . According to simulation results, the flight controller can keep the UAV flying stably.
Keywords: MATLAB; PID control; Four-rotor UAV;Linear motion equation;Angular motion equation

Chapter 1: Introduction
1.1 Background and Significance of this study
With the rapid advancement of aerospace and aviation, 
multi-rotor drones have experienced swift development. 
Thanks to their simple mechanical structure and flight 
versatility, they are applicable to a variety of production 
and life scenarios. 
Due to the complex characteristics of quadrotor drones, 
the design of their control systems poses particular 
challenges. The focus of this research is to establish an 
accurate mathematical model and to design an effective 
controller.

1.2 Main Research Content
The main aim of this study is to explore the underactuated 
characteristics of quadrotor drones and investigate their 
flight postures by establishing their dynamical models. 
The control system will be designed using classical PID 
control methods to manage the motion attitudes.

Chapter 2: Mathematical Model of 
Quadrotor Drones
Quadrotor drone control systems are underactuated, 
nonlinear dynamical systems with four control inputs 
and six degrees of freedom in outputs. Various variables 
within the system are interdependent. Drones are affected 
by various unpredictable environmental factors during 
flight; therefore, establishing a mathematical model for 
their dynamical system is crucial.

2.1 Principles of Quadrotor Drone Flight
The direct power source for quadrotor drones comes 

from motors. There are two types of rotor installation 
configurations: the X-configuration and the cross-
configuration[1].
Changes in the flight posture of the quadrotor drone will 
involve six variables: three translational components 
generated by translational motion and three angular 
components generated by rotational motion. Control over 
these variables was achieved by altering the rotational 
speeds of motors.
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Figure 2.1: Structural Framework of Quadrotor Drone 

 

 

 

 

 

 

Figure 2.1: Structural Framework of 
Quadrotor Drone

Due to the coupling between the rotational and 
translational motions of the quadrotor drone, altering 
its attitude angles allows it to fly according to setted 
trajectory. The varying speeds of its four 
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motors enable the quadrotor drone to freely fly 
in space. Figure 2.1, as mentioned above, depicts 
t he  s t ruc tu ra l  f r amework  o f  quadro to r  d rone . 
2.2 Mathematical Model of the Quadrotor Aircraft
2.2.1 Modeling Assumptions

The quadrotor control system is a nonlinear control 
system, making it hard to construct an exact math model. 
For the sake of research convenience , the following 
assumptions are made:
(1)The drone has a symmetrical external structure with 
uniformly distributed mass.
(2)The geometric center coincides with body coordinate 
system origin.
(3)Gravitational effects due to the distance between 
objects are ignored; the gravitational force remains 
constant.

(4)Thrust in every directions is directly proportional to 
motor speed square.
(5)The gravitational forces keep constant during flight[2].
(6)The airflow is stable; friction torques are ignored.
(7)The quadrotor performs low-speed and low-angle 
flight[3].
As shown in Figure 2.5, under the influence of lift, the 
drone body generates pitch, roll, yaw torques. Upon the 
relationships among driving force, lift, these three torques, 
and the relationships among six degrees of freedom 
induced by changes in drone’s flight posture, a Newton-
Euler model was developed. This model allows for the 
calculation and output of six acceleration quantities. 
These acceleration quantities, after undergoing double 
integration, yield the position of the drone body.

Figure 2.5: Quadrotor Drone Modeling Framework
2.2.2 Linear Motion Equations of the Quadrotor Drone

The quadrotor drone has six degrees of freedom, 
corresponding to the parametersx y z、 、 、 、 、φ θ ψ,  The 
meanings of these parameters can be seen from Table 2.2.

Table 2.2 Symbol Explanation

x Refer to horizontal directionx

y Refer to horizontal directiony

z Refer to horizontal directionz

φ Roll angle, angular acceleration isφ
..

θ Pitch angle, angular acceleration isθ
..

ψ Yaw angle, angular velocity is denoted asψ
.

In 3D space, a rigid body rotating around origin has three 
degrees of freedom, described in full by three generalized 

coordinates. If the three coordinate quantities rotate 
according to right-hand rule, their basic rotations are as 
follows.
Let thex- axis fixed, rotate by angleφaround x, axis, and 
represent the new coordinates as Equation (1).

   
   
   
   
   

x x

z z
y y

2 1

2 1

2 1=

 
 
 
 
 

1 0 0
0 cos sin
0 sin cos−

φ φ

φ φ

    (1)

Let y-axis fixed, rotate by angleθaroundyaxis, and 
represent the new coordinates  as Equation (2).

   
   
   
   
   

x x

z z
y y

2 1

2 1

2 1=

 
 
 
 
 sin 0 cos

cos 0 sin
0 1 0
θ θ

θ θ−

  (2)

(1)Keep zaxis fixed , rotate by angleψaround z-axis, and 
represent the new coordinates as Equation (3).
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(3)
   
   
   
   
   

x x

z z
y y

2 1

2 1

2 1= −

 
 
 
 
 

cos sin 0
sin cos 0

0 0 1

ψ ψ

ψ ψ

The core idea of Euler angle coordinate transformation 
is that one coordinate system can be expressed by three 
spatial rotations of another reference coordinate system. 
The crelevant transformation matrices for rotations around 
thex y、 、zaxes have been derived above. Let us denote 
these by Equations (4), (5), and (6).

Cx =

 
 
 
 
 

1 0 0
0 cos sin
0 sin cos−

φ φ

φ φ

 (4)

Cy = −

 
 
 
 
 

cos sin 0
sin cos 0

0 0 1

ψ ψ

ψ ψ  (5)

Cz =

 
 
 
 
 sin 0 cos

cos 0 sin
0 1 0
θ θ

θ θ−

 (6)

Combining Equ (4), (5), (6), the attitude matrix express by 
Euler angles is given by Equation (7).

C C C C

= 0 cos sin sin cos 0 0 1 0

= sin sin cos cos sin sin sin sin cos cos sin cos

=

 

   

 

   
   
   
   

 
 
 

1 0 0 cos sin 0 cos 0 sin

0 sin cos 0 0 1 sin 0 cos

sin cos cos +sin sin si

x y z

θ φ ψ φ ψ θ φ ψ φ ψ φ θ

θ φ ψ φ ψ

−

cos cos cos sin sin

φ φ ψ ψ

φ φ θ θ

θ ψ θ ψ θ

− +

−

ψ ψ θ θ

n cos sin sin cos cos cosθ φ ψ φ ψ θ φ−

−

−

    

(7)

LetCg
b(whereCg

bis the transformation matrix). Similarly, the 
transformation matrix from the body to ground coordinate 
system is given by Equation (8).

C Cb g
g b= ( )T (8)

For a force analysis on the body of the quadrotor drone, 
there are primarily three forces acting on body:The 
lift forceF C FT b T= g b(whereFT

bis defined in the body 

coordinate system).The air resistanceFDhindering its 
flight.The gravitational forceGdue to the drone’s own 
mass.Representing these net external forces in a ground 
coordinate system, they can be expressed as:
F C F F GS b T D= − −g b  (9)
The total lift force can be expressed as:

F FT i
b b=  

 
 

0 0 ∑
i=

4

1

T

 (10)

In Equation (10), F ii
b ( =1,2,3,4)represents the lift force 

generated by the individual rotor i Combining Equations 
(7) and (10), the lift force can be expressed in matrix form 
as:

F C F FT b T i= = −g b b∑
i=

4

1

 
 
 
 
 

sin cos cos +sin sin
sin cos sin sin cos

θ φ ψ φ ψ
θ φ ψ φ ψ

cos cosθ φ

 (11)

The gravitational force G was expressed in matrix form 
as:

G =   0 0 mg
T
 (12)

The air resistance is:

F KD D=

 
 
 
 
 
 
 

x

z

y
.

.

.
 (13)

In Equation (13), KD = d g K K Kri , ,( Dx Dy Dz )represents the 

drag coefficient matrix. Thus, the net force is:

F F K yS i Dy= − − −∑
i=

4

1

b  
 
 
 

 sin cos cos sin sin 0
sin cos sin sin cos 0

θ φ ψ φ ψ
θ φ ψ φ ψ

cos sinθ φ

+
 
 

 
 

 

 
 

K x

K z

Dx

Dz

.

.

.  
 

 
 
 mg

 (14)
Applying force LawF ma= , we can combine it with Equ 
(14) to obtain Equation(15)
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m z F K z mg

m y F K y

m x F K x

.. .

.. .

.. .

= − −

= + −

= − −

cos sin

(

(

sin cos cos sin sin

sin cos sin sin cos

θ φ

θ φ ψ φ ψ

θ φ ψ φ ψ

∑
i=

4

1
i Dz
b

)

)

∑

∑
i

i

=

4

=

4
1

1

i Dx

i Dy

b

b  (15)

2.2.4 Angular Motion Equations of the Quadrotor 

Drone

According to Euler’s equations, in an inertial system, 
the linear and angular motion equations of drone can be 
expressed as Equation (16):






M J

F mS

S

= =

= =

dP dV
dt dt
dL
dt dt

dwbody

 (16)

Table 2.3 Symbol Explanation

FS Net external force V Velocity of the center of mass

ws Algebraic sum of the rotor speeds M S Net torque about a certain rotation axis

L Angular momentum V b Linear velocity in the body coordinate system

W b Angular velocity in body coordinate 
system m Total mass of aircraft

I3 3× Unit matrix I Inertia tensor of the body

FS
b Net external force in body coordinate 

system M S
b Net external torque 

M x Net torque along thex-axis M y Net torque along they-axis 

M z
Net torque along thez-axis in body 

coordinates l Distance of mass center to rotation axis

d Drag coefficient of the rotor b Lift coefficient of the rotor

u Linear velocity component along thex
-axis v Linear velocity component along they-axis 

w : Linear velocity component along thez
-axis in body coordinates V b Linear velocity vector relative to the body coordinate 

system

Due to the vectorial nature of force and torque, the 
net results for rigid body motion, both rotational 
and translational, can be described by Newton-Euler 
equations:









M W L I W W IW

F W P m V W VS
b b b b b

S
b b b b b

= + × = + ×

= + × = + ×

 
 
 

 
 
 

dP
dt
dL
dt

rot

rot

 
 

 

.

.

( )
 (17)

Combining this with the motion of the aircraft, the above 
equation is represented in matrix form:

   
      
   0

mI F

3 3×

3 3 3 3× ×0
I M

 
 

 
  W

V
.

.

b

b

= −S
b

S
b

 
 

 
 W IW

W mV
b b

b b

×

×(
( )

)
 (18)

In Equation (18), linear motion equations are established 

.W mVb ×( b ), the rotational quantity around the body, has 

zero displacement in this system. Therefore, the linear 
motion equation is:

mV F
.
= S (19)

For body coordinate system, angular motion equation 
remains unchanged:

M I W W IWS
b b b b= + ×

.

( ) (20)

The quadrotor drone has excellent symmetry. Based on the 
definition of the area moment of inertia, we can deduce 
that I I I I I Ixy yx yz zy zx xz= = = = = = 0, ut the moments of 
inertia about thex y z、 、  axes are non-zero. The inertia 
matrixIof body is represented as Equation (21):
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I I I I I= =

 
 
 
  
 

I I I

I I I I

xx xy xz

zx zy zz z

yx yy yz y

 
 
 
 
 

0 0

0 0

Ix 0 0
 (21)

Here, I I Ix y z、 、 correspond to the moments of inertia 

about the x y z、 、 axes. W w wb = w  x y z

T
, in which 

wx、 、w wy zare the components of vector W balong 

thexb b b、y 、z axes .

W IW w w w w I Ib b× = −( )= w

 
  
 
 
 

I w wx x

i

w
x

  

I I

j k

y z

y z x z z y

y z

 
 
 
 
 
 

w w I I

w w I Ix y z y

z y z y

(
(

(

−

−

)
)

)
 (22)

Combining  the  above  two equa t ions  and  a f te r 
simplification, we get:












M I w I I w w

M I w I I w w

M I w I I w wx x z y z y

z z y x x y

y y x z x z

b

b

b

= + −

= + −

= + −
.

.

.

z

x

y

(

(
(

)

)
)  (23)

The lift torque on the drone body in the three axes is given 
by:

 
 
 
  
 M

M l F F

MT

T

T

b

b b b

b
Y

Z

X

= −

 

 
 
 
 
 − + − +M M M MD D D D

b b b b
1 2 3 4

l F F

(
(

3 1

4 2
b b− )

)  (24)

M iDi
b ( =1,2,3,4) represents the torque experienced by 

each rotor along thez-axis during flight and is expressed 
as:(25)
A s s u m i n g  t h e  a n g u l a r  v e l o c i t i e s  , i M dwDi i

b = 2 

arew ii = =( 1,2,3,4) ,  then the individual  l i f t  force 
generated by each rotor was represented as:
F bwi i

b = 2 (26)
Here,b is the lift coefficient of the rotor, leading to:

 
  
 
 
 

M

M lb w w

M

T

T

T

b

b

b
Y

Z

X

= −

 
 

 
 
 
 

d w w w w(− + − +1 2 3 4
2 2 2 2

lb w w

(
(

3 1

4 2

2 2

2 2− )
)

)
 (27)

During rotation, the object will experience gyroscopic 
effects. The quadrotor drone performs high-speed rotations 
in opposite directions between adjacent rotors during 
flight. When the direction of angular momentum changes 
due to a change in attitude, the rotor generates a torque. 
When the torques from all four rotors cannot cancel each 

other out, a gyroscopic torque is generated, causing the 
body to deviate. This can be expressed as:

M W Ig
b b= × Ω∑

i=

4

1
( r i ) (28)

Here, Ω = −i i
 
 0 0 1( )i w

T
;Iris the rotor’s moment of 

inertia. Simplifying, we get:

M I w w w w w I w wg 1 2 3 4
b = − + − + − = −r x r x s( )

 
 
 
 
 0 0

w I w wy r y s 
 
 
 
 

 (29)

In this equation, wsis the algebraic sum of the speeds of 

the four rotors, i.e.,w w w w ws = − + − +1 2 3 4. The gyroscopic 
effects generated by the rotor speeds are solely dependent 
on the angular velocity. 
From the above equations, the net torque can be 
determined as:

 
 
 
 
 

M

M M M lb w w I w w
M x

z

y T r x s

b

b b b

b

= + = − + −

  
 

 
 

 M

MT

T

b

b
Y

Z

X

g 3 1

 
 
 
 
 
 d w w w w(− + − +1 2 3 4

2 2 2 2

lb w w(
(

4 2

2 2

2 2−

)
)

)

 
 
 

 
 

I w wr y s

0

 (30)
In vector form, this can be written as:

(31)

Combining the above analyses, Equations (15) and (31) 
represent its nonlinear motion equations.
2.2.5 Kinematic Model
In the case of translational motion of the quadrotor 
drone, assuming that the velocity components are known, 

V bcan be represented as a vector:V u v wb = ( )T

TransformingV b to the ground coordinate system is 
expressed as equation(32).

















x u v

z u v w

y u v

.

.

.

= − + +

= + −

= + −

+ +

+ −

cos cos sin cos cos cos sin

cos sin sin sin sin cos cos

w sin

w sin sin

sin sin cos cos cos

(

(sin cos sin cos

sin cos cos

θ ψ θ φ ψ φ ψ

θ ψ θ φ ψ φ ψ

θ φ θ φ θ

θ φ ψ φ ψ

θ φ ψ φ ψ

(

(
)

)
)

)

 (32)

The angular velocity vector of drone isW b, The 
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relationship between its three angular velocity components 
along the axes  and the three angular rates in body 
coordinate system were described by Equation (33):

W w C C Cb = = + +

=

 

 
 
 
 

 
 
 
 
 1 0 sin

w

w

0 cos sin cos
0 sin cos cos

x

z

y x y x

−

φ φ θ θ

φ φ θ

 
 
 
 

 
 

ψ

0
0 0

−

.

θ

 
 

 

 
 
θ

0

0

.

 
 
 
 
 

 
 

ψ

φ
.

.

.

 

 

 
 
 

 φ

0

.

 (33)

Upon transformation, we get

 

 
 

 
 
 
 

ψ

θ φ φ

φ
.

.

.

= −

 
 
 
 
 
 

 

 

1 sin tan sin
0 cos sin

0
cos cos
sin cos

φ θ θ

φ φ
θ θ

−
 
 

 

 
 w

w
wx

z

y  (34)

Rewriting the equation yields:











ψ φ φ

θ φ φ

φ φ φ θ
.

.

= + +

= −

= +

w w w

w w

cos

x z y

y z

1

cos sin

θ

(

(w w

cos sin tan

z ycos sin
.

)

)

 (35)

θ = ±
π
2
θ = ±

π
2

In the above equation, cosθappears in the 

denominator. Near      , it is not possible to numerically 
solve for Euler angles using angular velocity. Therefore,     
s a singularity in the Euler angle representation. This Equ 
is also represented as the rotational motion equation of 
system dynamics, reflecting the association of the three 
components of angular and the attitude angular velocity.
From the previous derivation, it is known that the 
mathematical model of the drone includes four sets of 
equations: the equations of motion, torque equations, 
navigation equations, and kinematic equations. After 
organizing, the nonlinear mathematical model of the 
quadrotor system during hover or slow flight is expressed 
as Equation (36):







































































































ψ φ φ

θ

φ φ φ θ

m x F K x

m z F K z mg

m y F K y

I w I I w w d w

I w I I w w I w w lb w w

I w I I w w I w w lb w w

z u v w

x u v

y u v

.

.

.

.

.

.

x x y z z y r y s

z z x y x y

y y z x x z r x s

= + +

= − + +

= −

= + −

= + −

.. .

= +

.. .

.. .

= − −

w w w

= + −

w w

= − −

+ +

+ −

cos

= − + −

= − + + −

= − − + −

x z y

cos cos sin cos cos cos sin

y z

cos sin sin sin sin cos cos

w

w

cos sin

(

(

1

sin cos cos sin sin

(

cos sin

sin sin cos cos cos

(

sin cos sin sin cos

(

(

(

θ

sin cos sin sin sin

sin cos cos sin sin

(

θ ψ θ φ ψ φ ψ

θ ψ θ φ ψ φ ψ

θ φ

θ φ ψ φ ψ

(

θ φ θ φ θ

θ φ ψ φ ψ

φ φ

w w

θ φ ψ φ ψ

θ φ ψ φ ψ

cos sin tan

z ycos sin

)

)
)

∑
i=

4

1

(

(

i Dz
b

(

)

1

)

2 2 2 2+ − +w w w2 3 4

(
(

)

)

∑

∑

)

i

i

)

3 1

4 2

=

2 2

4

=

2 2

4
1

1

i Dx

i Dy

b

b

)
)

)

)

) \ * 

MERGEFORMAT (36)
2.2.6 Model Simplification

The derived nonlinear mathematical model considers 
multiple physical effects. For the sake of research 
convenience, we assume that air resistance can be ignored. 
The moment of inertia ofobject is related to the mass and 
volume of the object. Given the small volume and light 
weight of the quadrotor drone, its moment of inertiaIris 
small. For ease of analysis, the gyroscopic effects are also 
neglected.
Assuming that the pitch and roll angles of quadrotor 
are small, and rotation speed is also small, the system 
dynamics equations can be transformed into a standard 
unit matrix:

 

 
 

 
 
 
 

ψ

θ

φ
.

.

.

=
 
 
 
 

 1 0 0
0 1 0
0 0 1

 
 
 
 
 w

w
wx

z

y  (37)

The driving force is described in terms of the rotor speed, 
that is, the power provided by the motor to the system 
is represented by the square sum of the rotor speeds. 
Considering the rotor speeds as input control variables, 
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the four virtual control input variables can be defined by 
Equation (38):














U l F F lb w w

U F b w w w w

U l F F lb w w

U M M M M d w w w w

1 1 2 3 4

3 3 1 3 1

2 4 2 4 2

4 1 2 3 4 1 2 3 4

= = + + +

= − = −

= − + − + = − + − +

= − = −

∑
i=

4

(
(
1

b b

D D D D

b b

b b b b

i
b (

)
)

2 2 2 2

(
(

2 2

2 2

)
)

(

)

2 2 2 2 )

    

 (38)
Assuming that the quadrotor structure is very symmetrical, 
and neglecting air resistance influence while performing 
small-angle motion, its nonlinear model can be simplified 
to Equation (39)[4].






























ψ

θ

φ

z g

x

..

y

..

..

..

..

..

=

= −

= +

=

=

=

U

U

U

I
U

U

m

m

m

U
I

x

I

y

2

1

1

z

1

3

4

cos cos

(

(

sin cos cos sin sin

sin cos sin -sin cos

θ φ

θ φ ψ φ ψ

θ φ ψ φ ψ )

)
 (39)

Note: Here,, x y z
.. .. ..
、、(displacements in the body coordinates) 

are the second derivatives ofx y z、 、 , which represent the 
accelerations in the three axes of the coordinate system. 

It can be seen that, x y z
.. .. ..
、、are related only toU1, φ

..
is related 

toU2, θ
..
is related toU3,andψ

..
is related to U4.

The virtual control input variables defined by Equation 
(38) can be represented in matrix form as shown in 
Equation (40):

 

 

 
 

 

 

 

U
U

U
U lbw lbw w

1

3

2 4 2 2

4

= =

 
 
 

 
 

 
 

bw bw bw bw

− + − +dw dw dw dw w

1 2 3 4
2 2 2 2

1 2 3 4 4

+ + +

2 2 2 2 2

lbw lbw w3 1 3
2 2 2

2 2 2

−

−
 
 
 
 
 

 

 

b b b b
0 0
−

− −

lb lb
d d d d

− lb lb
0 0

 

 
 
 

 

 
 

w1
2

      

 (40)
Typically, the forcesUi, can be obtained based on the 
desired attitude. However, in the control program, it is 

necessary to calculate the speed control variablewi
2, for 

each motor, thus requiring a transformation.

 
 
 

 

 

 
 w

w

w
w U U

1

3

2 2 2

4

2

2

2

2

= =
 

 

 

 

 
 

 b b b b
0 0
−

− −

lb lb
d d d d

− lb lb
0 0

−1
   
   
   
   
   
   
   

U U

U U
U U

1 1

3 3

4 4

1
4

 
 
 

 
 

 

 

 

 
 
 
 b bl d

b bl d

b lb d

b bl d

1 2 1

1 2 1

1 2 1

1 2 1

0

0

−

− −

0

0

−

 (41)

C h a p t e r  3 :  D e s i g n  o f  t h e  P I D 
Controller
3.1 Introduction to PID Algorithm
The PID controller has a simple structure, stable 
performance, easy adjustment, and reliable operation, 
making it widely applied in practical engineering 
scenarios[5].

Figure 3.1: Structure of PID Controller
In this experiment, the application principle of the PID 
controller in the quadrotor is as follows: An initial 
value is assumed and the current attitude angle data is 
obtained through the calculator, which is then summed 
with the initial value. By continuously adjusting the PID 
parameters, the attitude angle stability of quadrotor drone 
is increased, 
enabling stable flight. The expression for the PID 
algorithm is:

U K e t K e d K e t( t ) = + +P I D( ) ∫0
t
(τ τ)

d
d
τ

( ) (42)

The meanings of the various characters are shown in Table 
3.1:
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Table 3.1 Explanation of Characters

Generally, the PID controller was considered as a filter in 
the frequency domain system. Based on this property, it is 

used to control the device.

3.2 Controller Design and Simulation

Figure 3.2 Block Diagram of Attitude Angle and Position Control System
The attitude control of the quadrotor consists of two 
control loops: inner and outer loops. Observing the 
simplified mathematical model, the change in attitude 
angle affects position change. The position control is 
treated as the outer loop, and attitude control is inner 
loop [6]. Observing its mathematical model, there are 
four input variables and six output variables, constituting 
an underactuated system. The variables are mutually 
influential, indicating coupling relationships [6]. The 
system diagram of the quadrotor’s position control and 
attitude angle control is shown in Figure 3.2.

3.2.1 Design of Position Loop Controller

Let  x y z be the given body coordinates, and the 

feedback position coordinates are the double integral of 

acceleration
 
 
 
x y z
.. .. ..

 calculated through the model:
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 (43)

Letψbe a known quantity, thus:
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 (44)

After researching, the relevant parameters for the 
quadrotor UAV are collected as shown in Table 3.1.
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Table 3.1 Quadrotor UAV Flight Parameters

Parameter Name Unit Value

Body massm kg 1.485

Rotor lift coefficientb N S* 2 3.15e-5

Rotor drag coefficientd N mS* 2 7.8e-7

Distance from motor to centerl m 0.5

Rotational inertia to x-axis kg m* 2 2.453e-3

Rotational inertia to y-axis kg m* 2 2.453e-3

Rotational inertia to z-axis kg m* 2 5.386e-2

Given the known quantitiesx y z、、, and yaw angleψ,we 

combine the above equations to calculate the roll angleφ

and pitch angleθ. Here we construct pseudo control 

variables as shown below:








U K e K e dt K e x

U K e K e dt K e y

U K e K e dt K e z

x P x I x D x

z P z I z D z

y P y I y D y

= + + +

= + + +

= + + +

1 1 1

3 3 3

2 2 2

∫

∫

∫

. ..

. ..

. ..
 (45)

The block diagram of position controller model was 
exhibited in Figure 3-3. Here, xc yc zc、 、  correspond 

to the input ports of the given position quantities x y z、、

, xg yg zg、 、  are the input ports for feedback positions 

x y zc c c、 、 ,  ang z_ is the input port for yaw angleψ , 

ang x ang_ _ y、  are the output ports for roll angle φ and 

pitch angleθ, U1is the output port for the system’s virtual 

control input U1.

Figure 3.3 Position Controller
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The internal structure can be seen below.

Figure 3.4 
Subsystem
3.2.2 Design of Attitude Loop Controller

Similar to the attitude control design, letφ θ ψ、、be the 

given attitude angles.φ θ ψ
.. .. ..
、、are the feedback attitude angle 

accelerations, which after integration yield the feedback 
attitude angle values. According to the adopted control 
method, we construct pseudo control variables as follows:








U K e K e dt K e

U K e K e dt K e

U K e K e dt K eψ ψ ψ ψ

θ θ θ θ

φ φ φ φ= + + +

= + + +

= + + +

P I D

P I D

P I D

4 4 4

5 5 5

6 6 6

∫

∫

∫

. ..

. ..

. ..

θ

φ

ψ

 (46)

Furthermore,
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 (47)

The corresponding motor speed is
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Here, we construct pseudo control variables and let 
l=b=d=1, Then, the motor speed is:
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 (49)

Based on this, the block diagram of the attitude control 
loop model was set up as  Figure 3.4.

Figure 3.4 Attitude Controller
The attitude control module and motor conversion module 
(the rotor subsystem) are used to input the motor speeds 
into the quadrotor UAV system model. The overall block 
diagram of the model encapsulates the outer loop position 

, the inner loop attitude control model, the quadrotor UAV 
system model, as Figure 3.5.
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Figure 3.5 Overall Simulation Model Block Diagram
The internal structure of that can be seen from Figure 
3.6. Its role is to minimize the impact of noise and output 
error.

Figure 3.6 Internal Structure of the Rotor 
Subsystem

3.3 Method for Adjusting PID Parameters
The key to PID regulation lies in the tuning of its 
parameters. A commonly used tuning method is the 
“Quad Axis” method. After the PID controller model 
is well-constructed, it uses cascading PID with inner 
and outer loops,which embodies the stability and the 
responsespeed of drone,respectively.First, adjust the inner 
loop for stability. In conditions without oscillations, the P 
value is positive related to stability. If slight oscillations 
appear during the adjustment, the P value is generally 
proper,  the D term is added for suppression. These two 
variables need to be coordinated, otherwise, it’s hard 

to realize stable effect.When adjusting the outer loop, 
don’t arbitrarily modify the parameters. Identify the issue 
based on the symptoms and then adjust the parameters to 
gradually achieve a stable effect.In the initial design of 
this controller, the PID parameters were exhibited in Table 
3.2. After optimization, that are as presented in Table 3.3.

Table 3.2    Initial PID Parameters for 
Quadrotor Controller(1)

Channel Proportional (P) Integral (I) Derivative 
(D)

x 100000 0 100000

y 28000 500 33000

z 160000 100000 100000

φ 100 2 200

θ 100 3 200

ψ 10000 1000 100000

3.4 Experimental Results Analysis
By comparing graphs of x.y.zposition response curves 
in Figure 3.7 and the curves in Figure 3.8, a conclusion 
can be obtained that the simulated results stabilize after 
4 seconds for  every degrees of freedom. The simulation 
results prove that this model is very suitable for quadrotor 
drone, verifying the reliability of PID controller. Since 
there are 6 PID controllers and there exist coupling 
among these six degrees of freedom, parameter tuning is 
somewhat challenging.
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Figure 3.7 Comparison of Position Control Simulation Curves with PID Controller

Figure 3.8 Comparison of Attitude Control Simulation Curves with PID Controller
From the y-position1 curve in Figure 3.7, it can be seen 
that the curve’s stability is not very good. Subsequent 
adjustments were made to the PID parameters of they.z
andθ channels, while the PID parameters for the other 
channels remained unchanged. The comparison graphs of 
he PID position control simulation and the PID attitude 

control simulation after modifying the PID parameters 
were exhibited in Figure 3.7 , 3.8. The optimized curves 
show better stability, and after 4 seconds, the output of 
all six degrees of freedom basically remains stable. The 
optimized PID parameters as Table 3.3.
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Table 3.3  Optimized PID Parameters for 
Quadrotor Controller(2)

Channel Proportional 
(P) Integral (I) Derivative 

(D)

x 100000 0 100000

y 40000 500 60000

z 165000 100000 100000

φ 100 2 200

θ 100 0.25 200

ψ 10000 1000 100000

Conclusion
During the preparation of this paper, a dynamic analysis 
was performed, and the dynamic equations for the 
quadrotor were established. These dynamic equations 
were then simplified for practical application. Based on 
the established model, a simulation model of the dynamic 
equations was built in MATLAB/Simulink using PID 
control methods. Continuous adjustments were made to 

the PID parameters to achieve stable control results.
Through the design of a quadrotor UAV controller 
using PID control methods, a deeper understanding 
of MATLAB software was achieved. This work also 
enhanced the ability to write functions in MATLAB, 
strengthened the application of the Simulink toolbox, and 
solidified the capability to build Simulink models based 
on mathematical equations.
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