
1

Dean&Francis

The Image Classification Algorithm Was Implemented on The MNIST
Data Set

Wayuan Xiao

Abstract:
In the current era of rapid development of science and technology, the recognition and classification of digital images
is the key to solving many problems, such as the application of license plate recognition, document digitization, and
remote sensing image surface classification. Based on the MNIST handwritten numerical data set collected by the
National Institute of Standards and Technology (NIST), this report uses Python language and PyTorch programming
framework to construct a convolutional neural network (CNN) structure and practice and experience the image
classification of handwritten digits in the MNIST data set.
Keywords: Convolutional neural networks, Convolution kernel, Data set, Pooling layer

1. Introduction
The MNIST data set is a handwritten digital image set
collected by the National Institute of Standards and
Technology of the United States of America and compiled
by collecting handwritten digital handwriting images
from 250 people. The purpose of collecting this data set
is to realize the recognition of handwritten digits through
algorithms. Deep learning is a machine learning algorithm
used to recognize data images. Deep learning simulates
the human brain’s neural network and is trained on large
amounts of data to recognize and classify information
such as images, speech, and natural language.
In 1989, LeCun, the first person to solve the problem of
handwritten digits on the MNIST data set through convolutional
neural networks, used the CNN algorithm to realize the
recognition of handwritten digits based on the MNIST data set
in his paper “Gradient-Based Learning Applied to Document
Recognition”[1] which made MNIST gradually become a well-
known handwritten numeric data set. Since 1998, this data set
has been widely used in machine learning and deep learning
to test the effectiveness of algorithms such as linear classifiers,
K-nearest neighbors, support vector machines (SVMs), neural
nets, convolutional neural networks, etc.
In this article, a convolutional neural network structure is
constructed. Convolutional neural networks (CNNs) are a
common deep learning architecture for image recognition.
This technology, which enables robots to autonomously
identify specific targets, is a major advance in computer
vision and greatly improves work efficiency.

2. Related work
2.1Convolutional neural networks (CNNs)
A convolutional neural network is a specialized artificial neural

network, and the image is the matrix, so the convolutional neural
network replaces the general matrix multiplication method
through the convolution operation, and the convolutional
layer convolutes the input image and transmits its results to
the next layer.[2] A convolutional neural network consists of an
input, hidden, and output layer specifically designed to process
pixel data and for image recognition and processing.[3] The
convolutional neural network contains the following concepts:
Kernal, Stride, Padding, Channel, and Feature Map. Moreover,
they are mainly composed of the following five layer-level
structures: Input layer, Convolutional computing layer(CONV
layer), ReLU layer, Pooling layer, and FC layer.

2.2 Input layer
The input layer of the neural network is the first layer of
the convolutional neural network and is the only layer
that interacts with the outside world. The data input
layer preprocesses the raw image data. In an image
classification task, each pixel is a neuron in the input
layer. Its role is to transform the input data into a format
that can be processed inside the neural network.[4]

2.3 Convolutional computing layer(CONV
layer)
The convolutional computing layer is the most important
in a convolutional neural network, which is locally
perceived and shared globally.
The convolution kernel convolutes the input content by
the prescribed step size for each move. In addition, we
can find that the output result obtained by convoluting
the 32*32 input content with a 5*5 convolution kernel is
28*28. We will find that its spatial dimension becomes
smaller, so we need to use padding to retain as much of
the original input content information as possible, and
the operation of filling is to add zeros to the surrounding

2

Dean&Francis

boundaries of the input content so that the input and output
content can always maintain the same spatial dimension.
The following diagram illustrates the calculation process
of convolution.

Figure1. CONV stride

Figure2. CONV toggle movement
2.4 Pooling layer
Pooling[5] plays a role in dimensionality reduction. In
convolutional neural networks, pooling operations are often
followed by convolutional operations and are used to reduce the
dimensionality of feature maps. The basic idea of the pooling
operation is to divide the feature graph into several sub-regions
and make a statistical summary of each sub-region. There are
two most common pooling operations: maximum pooling and
average pooling. Through pooling, we can reduce the dimension
of the feature map, reduce the number of parameters in the
network, avoid the occurrence of overfitting, and improve the
calculation speed and operation effi ciency of the model.

2.5 Fully connected layer
All neurons between the two layers are heavily connected.
In general, the fully connected layer appears at the tail
of the convolutional neural network. Please refer to the

Offi cial website of the MNIST data set: http://yann.lecun.
com/exdb/mnist/.
3. Experimental analysis:
(1)Load the necessary libraries
Add the torch network model and abbreviate it to “nn,”
import function, defi ne it as F, import the optimizer and
abbreviate it as “optimal,” load torch-vision to operate on
the database, load datasets, and transform.
(2) Defi ning Hyperparameters
Hyperparameters are used to defi ne the model structure or
optimization strategy. The diff erence between parameters
and hyperparameters is that the neural network learns
parameters, while hyperparameters are set artifi cially. In
this experiment, we need to process 60,000 images, so
this defi nition aims to process 60,000 images in batches to
improve our operational effi ciency.
The role of BATCH_SIZE is to defi ne the quantity to be
processed for each batch. In this experiment, we define
the quantity processed per batch as 16.
DEVICE refers to the device used by the computer in this
experiment, whether it is trained on the CPU or the GPU.
EPOCHS aims to defi ne the number of training rounds, i.e.,
to cycle a data set through several rounds of operations. In
this experiment, we set 10 rounds of training.
(3) Build a pipeline and process the images
Call the transform library to build a pipeline, and use the
composition to transform each input image, including
stretching, zooming in, shrinking, rotating, etc. Because
the operation in PyTorch is carried out in tensor format,
equivalent to a container, we also need to convert the
image to tensor format. The effect of normalization
for regularization is that when the model is overfitted,
regularization can be used to reduce the complexity of the
model.
(4) Download, load data
In this experiment, we need to download the data through
the code, load it into the model, including 60,000 training
sets and 10,000 test sets, and use “datasets” to download
the data set. The download order of the training set and the
test set is as follows: download the training set fi rst and
then download the test set. After downloading the data set,
we need to load the data and use DateLoader to load it, in
which we need to set the batch_ size hyperparameter. You
also need to set shuffle to scramble the image for better
accuracy.
(5) Build a network model
Building a network model is the most important part of
this experiment. First, you must build Digit, inherit the
Module, and call the Module, which defi nes the properties.
Second, we start to build 2D convolution: in the fi rst layer,
we set the input channel to 1, the output channel to 10, and
the convolution kernel to be 5*5, and the second layer,

3

Dean&Francis

because the input of the second layer is the output of the
first layer, the input channel of the second layer is 10, the
output channel is 20, and the convolution kernel is 3*3. In
the next place, we need to define a fully connected layer,
which is a linear layer. The first fully connected layer has
20*10*10 input channels and 500 output channels.
Similarly, the number of input channels in the second
layer is the number of output channels in the first layer.
Hence, the second fully connected layer has 500 input
and ten output channels. After that, we define forward
propagation and perform a convolution operation. We
call convolutional layer 1, input batch*1*28*28, and
output batch*10*24*24, where the source of 10 is output
channel 10, and 24 is obtained by image pixel 28 minus
the convolution kernel five plus step 1. Afterward, the
output of x is given to the activation function to maintain
the output, where the activation function is to add an
activation function between all the hidden layers so
that the output is a nonlinear function so that the neural
network becomes more expressive. Next, we need to set
a pooling layer to reduce the dimension of the feature
map, where we set the maximum pooling layer to
(x,2,2), 2 is the step size, input batch*10*24*24, output
batch*10*12*12.
Furthermore, we call convolutional layer 2, input
batch*10*12*12, output batch*20*10*10, and then
activate it with the above convolutional layer 1. After
that, we stretch it and send the stretched data to the fully
connected layer. The first layer is input batch* 2000 and
output batch* 500, and they are activated again to make
the model more fully expressed. The second layer: input
batch*500, output batch*10. Finally, the softmax loss
function is called to calculate the probability value of each
number after classification and finally returns.
(6) Define the optimizer
Create a model Digit and deploy it to the device, and then,
create an optimizer using the Adam optimizer, which
is used to update the model parameters to optimize the
training and test results.
(7) Define the training method
First, you need to upload the model, device, data, and
optimizer; secondly, start model training: call train, read
data and target, deploy data to the device, and initialize
the gradient to zero. Secondly, you need to predict the
result after training, then compare the real value with
the predicted value, call the cross-entropy loss function,
and accumulate to calculate the loss, then call the max
function, define the horizontal axis, find the largest
subscript of each row on the horizontal axis, to obtain
the subscript with the largest probability value, and then
perform backpropagation, and then update the parameters,
and use the if statement to judge multiple cycles.

(8) Define the test method
In general, the training method is defined as the same.
First, you must upload the model, equipment, and test
data set. Secondly, the model is verified, and the model_
eval is called to verify the model. Next, the correct rate
is assumed to be 0 initially, and then the correct rate is
counted. Then, the test loss is required, and there is no
need to calculate the gradient and backpropagation in the
test. The above two items only need to be carried out in
training. After testing the loss, we need to read the data
and target to the test_loader and then deploy them to the
DEVICE. Next, the model is called to test the data, and
then the cross-entropy function is used to calculate the test
loss, and the subscript with the largest probability value is
found. Finally, the accuracy is accumulated.
(9) Invoke training and testing methods
We must also upload the model, hyperparameters, devices,
data, and the optimizer.
(10) Consequence
Ultimately, the accuracy rate can reach 98 percent or 99
percent.

4. Conclusion
Using PyTorch to construct a new environment for
experimental operation, a two-layer convolutional neural
network was built, one of which used a convolutional
kernel of 5*5 and a layer of 3*3. A pooling layer was built
to reduce the dimensionality of the image, and secondly,
the data were trained and tested, and the handwritten
numbers in the MNIST data set were classified by setting
hyperparameters, backpropagation, and calculation loss.
Eventually, the accuracy was between 98% and 99%.

References
[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” in Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi:
10.1109/5.726791.
[2] Charmve. 2021. Explanation of the principles of
convolutional neural networks for computer algorithms. Zhihu.
May 22. https://mbd.baidu.com/ma/s/Dhd63xfk
[3] Anonymous users. 2020. Convolutional neural networks.
Global Encyclopedia. https://vibaike.com/174473/
[4] Srrrrr ran. 2023. What are the roles of the various layers of
a neural network. Baidu AI Studio. March 13. https://ml.mbd.
baidu.com/r/19D9fWEVS1O?f=cp&u=bb6d2c549690db60
[5] Helloworld188888. Pooling layer. CSDN. https://minipro.
baidu.com/ma/qrcode/parser?app_key=y1lpwNoOyVpW33XOP
d72rzN4aUS43Y3O&_swebFromHost=baiduboxapp&path=%2
Fpages%2Fblog%2Findex%3FblogId%3D130371223&launchid
=CFD4DD52-9136-4213-AE59-776BEB20828B

