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Abstract:
In the current era of rapid development of science and technology, the recognition and classification of digital images 
is the key to solving many problems, such as the application of license plate recognition, document digitization, and 
remote sensing image surface classification. Based on the MNIST handwritten numerical data set collected by the 
National Institute of Standards and Technology (NIST), this report uses Python language and PyTorch programming 
framework to construct a convolutional neural network (CNN) structure and practice and experience the image 
classification of handwritten digits in the MNIST data set.
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1. Introduction
The MNIST data set is a handwritten digital image set 
collected by the National Institute of Standards and 
Technology of the United States of America and compiled 
by collecting handwritten digital handwriting images 
from 250 people. The purpose of collecting this data set 
is to realize the recognition of handwritten digits through 
algorithms. Deep learning is a machine learning algorithm 
used to recognize data images. Deep learning simulates 
the human brain’s neural network and is trained on large 
amounts of data to recognize and classify information 
such as images, speech, and natural language.
In 1989, LeCun, the first person to solve the problem of 
handwritten digits on the MNIST data set through convolutional 
neural networks, used the CNN algorithm to realize the 
recognition of handwritten digits based on the MNIST data set 
in his paper “Gradient-Based Learning Applied to Document 
Recognition”[1] which made MNIST gradually become a well-
known handwritten numeric data set. Since 1998, this data set 
has been widely used in machine learning and deep learning 
to test the effectiveness of algorithms such as linear classifiers, 
K-nearest neighbors, support vector machines (SVMs), neural 
nets, convolutional neural networks, etc.
In this article, a convolutional neural network structure is 
constructed. Convolutional neural networks (CNNs) are a 
common deep learning architecture for image recognition. 
This technology, which enables robots to autonomously 
identify specific targets, is a major advance in computer 
vision and greatly improves work efficiency.

2. Related work
2.1Convolutional neural networks (CNNs)
A convolutional neural network is a specialized artificial neural 

network, and the image is the matrix, so the convolutional neural 
network replaces the general matrix multiplication method 
through the convolution operation, and the convolutional 
layer convolutes the input image and transmits its results to 
the next layer.[2] A convolutional neural network consists of an 
input, hidden, and output layer specifically designed to process 
pixel data and for image recognition and processing.[3] The 
convolutional neural network contains the following concepts: 
Kernal, Stride, Padding, Channel, and Feature Map. Moreover, 
they are mainly composed of the following five layer-level 
structures: Input layer, Convolutional computing layer(CONV 
layer), ReLU layer, Pooling layer, and FC layer.

2.2 Input layer
The input layer of the neural network is the first layer of 
the convolutional neural network and is the only layer 
that interacts with the outside world. The data input 
layer preprocesses the raw image data. In an image 
classification task, each pixel is a neuron in the input 
layer. Its role is to transform the input data into a format 
that can be processed inside the neural network.[4]

2.3 Convolutional computing layer(CONV 
layer)
The convolutional computing layer is the most important 
in a convolutional neural network, which is locally 
perceived and shared globally.
The convolution kernel convolutes the input content by 
the prescribed step size for each move. In addition, we 
can find that the output result obtained by convoluting 
the 32*32 input content with a 5*5 convolution kernel is 
28*28. We will find that its spatial dimension becomes 
smaller, so we need to use padding to retain as much of 
the original input content information as possible, and 
the operation of filling is to add zeros to the surrounding 
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boundaries of the input content so that the input and output 
content can always maintain the same spatial dimension. 
The following diagram illustrates the calculation process 
of convolution.

Figure1. CONV stride

Figure2. CONV toggle movement
2.4 Pooling layer
Pooling[5] plays a role in dimensionality reduction. In 
convolutional neural networks, pooling operations are often 
followed by convolutional operations and are used to reduce the 
dimensionality of feature maps. The basic idea of the pooling 
operation is to divide the feature graph into several sub-regions 
and make a statistical summary of each sub-region. There are 
two most common pooling operations: maximum pooling and 
average pooling. Through pooling, we can reduce the dimension 
of the feature map, reduce the number of parameters in the 
network, avoid the occurrence of overfitting, and improve the 
calculation speed and operation effi  ciency of the model.

2.5 Fully connected layer
All neurons between the two layers are heavily connected. 
In general, the fully connected layer appears at the tail 
of the convolutional neural network. Please refer to the 

Offi  cial website of the MNIST data set: http://yann.lecun.
com/exdb/mnist/.
3. Experimental analysis:
(1)Load the necessary libraries
Add the torch network model and abbreviate it to “nn,” 
import function, defi ne it as F, import the optimizer and 
abbreviate it as “optimal,” load torch-vision to operate on 
the database, load datasets, and transform.
(2) Defi ning Hyperparameters
Hyperparameters are used to defi ne the model structure or 
optimization strategy. The diff erence between parameters 
and hyperparameters is that the neural network learns 
parameters, while hyperparameters are set artifi cially. In 
this experiment, we need to process 60,000 images, so 
this defi nition aims to process 60,000 images in batches to 
improve our operational effi  ciency.
The role of BATCH_SIZE is to defi ne the quantity to be 
processed for each batch. In this experiment, we define 
the quantity processed per batch as 16.
DEVICE refers to the device used by the computer in this 
experiment, whether it is trained on the CPU or the GPU. 
EPOCHS aims to defi ne the number of training rounds, i.e., 
to cycle a data set through several rounds of operations. In 
this experiment, we set 10 rounds of training.
(3) Build a pipeline and process the images
Call the transform library to build a pipeline, and use the 
composition to transform each input image, including 
stretching, zooming in, shrinking, rotating, etc. Because 
the operation in PyTorch is carried out in tensor format, 
equivalent to a container, we also need to convert the 
image to tensor format. The effect of normalization 
for regularization is that when the model is overfitted, 
regularization can be used to reduce the complexity of the 
model.
(4) Download, load data
In this experiment, we need to download the data through 
the code, load it into the model, including 60,000 training 
sets and 10,000 test sets, and use “datasets” to download 
the data set. The download order of the training set and the 
test set is as follows: download the training set fi rst and 
then download the test set. After downloading the data set, 
we need to load the data and use DateLoader to load it, in 
which we need to set the batch_ size hyperparameter. You 
also need to set shuffle to scramble the image for better 
accuracy.
(5) Build a network model
Building a network model is the most important part of 
this experiment. First, you must build Digit, inherit the 
Module, and call the Module, which defi nes the properties. 
Second, we start to build 2D convolution: in the fi rst layer, 
we set the input channel to 1, the output channel to 10, and 
the convolution kernel to be 5*5, and the second layer, 
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because the input of the second layer is the output of the 
first layer, the input channel of the second layer is 10, the 
output channel is 20, and the convolution kernel is 3*3. In 
the next place, we need to define a fully connected layer, 
which is a linear layer. The first fully connected layer has 
20*10*10 input channels and 500 output channels.
Similarly, the number of input channels in the second 
layer is the number of output channels in the first layer. 
Hence, the second fully connected layer has 500 input 
and ten output channels. After that, we define forward 
propagation and perform a convolution operation. We 
call convolutional layer 1, input batch*1*28*28, and 
output batch*10*24*24, where the source of 10 is output 
channel 10, and 24 is obtained by image pixel 28 minus 
the convolution kernel five plus step 1. Afterward, the 
output of x is given to the activation function to maintain 
the output, where the activation function is to add an 
activation function between all the hidden layers so 
that the output is a nonlinear function so that the neural 
network becomes more expressive. Next, we need to set 
a pooling layer to reduce the dimension of the feature 
map, where we set the maximum pooling layer to 
(x,2,2), 2 is the step size, input batch*10*24*24, output 
batch*10*12*12.
Furthermore, we call convolutional layer 2, input 
batch*10*12*12, output batch*20*10*10, and then 
activate it with the above convolutional layer 1. After 
that, we stretch it and send the stretched data to the fully 
connected layer. The first layer is input batch* 2000 and 
output batch* 500, and they are activated again to make 
the model more fully expressed. The second layer: input 
batch*500, output batch*10. Finally, the softmax loss 
function is called to calculate the probability value of each 
number after classification and finally returns.
(6) Define the optimizer
Create a model Digit and deploy it to the device, and then, 
create an optimizer using the Adam optimizer, which 
is used to update the model parameters to optimize the 
training and test results.
(7) Define the training method
First, you need to upload the model, device, data, and 
optimizer; secondly, start model training: call train, read 
data and target, deploy data to the device, and initialize 
the gradient to zero. Secondly, you need to predict the 
result after training, then compare the real value with 
the predicted value, call the cross-entropy loss function, 
and accumulate to calculate the loss, then call the max 
function, define the horizontal axis, find the largest 
subscript of each row on the horizontal axis, to obtain 
the subscript with the largest probability value, and then 
perform backpropagation, and then update the parameters, 
and use the if statement to judge multiple cycles.

(8) Define the test method
In general, the training method is defined as the same. 
First, you must upload the model, equipment, and test 
data set. Secondly, the model is verified, and the model_
eval is called to verify the model. Next, the correct rate 
is assumed to be 0 initially, and then the correct rate is 
counted. Then, the test loss is required, and there is no 
need to calculate the gradient and backpropagation in the 
test. The above two items only need to be carried out in 
training. After testing the loss, we need to read the data 
and target to the test_loader and then deploy them to the 
DEVICE. Next, the model is called to test the data, and 
then the cross-entropy function is used to calculate the test 
loss, and the subscript with the largest probability value is 
found. Finally, the accuracy is accumulated.
(9) Invoke training and testing methods
We must also upload the model, hyperparameters, devices, 
data, and the optimizer.
(10) Consequence
Ultimately, the accuracy rate can reach 98 percent or 99 
percent.

4. Conclusion
Using PyTorch to construct a new environment for 
experimental operation, a two-layer convolutional neural 
network was built, one of which used a convolutional 
kernel of 5*5 and a layer of 3*3. A pooling layer was built 
to reduce the dimensionality of the image, and secondly, 
the data were trained and tested, and the handwritten 
numbers in the MNIST data set were classified by setting 
hyperparameters, backpropagation, and calculation loss. 
Eventually, the accuracy was between 98% and 99%.
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