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Abstract
Industrial defect detection plays a crucial role in modern manufacturing. Identifying and addressing inferior products 
contributes to enhancing product quality, strengthening product competitiveness, and increasing customer satisfaction. 
Existing surveys of industrial defect detection are relatively scarce and struggle to reflect the latest development 
trends. Therefore, this article provides a more detailed and in-depth survey of industrial defect detection technologies. 
The article first reviews the development history of industrial defect detection methods. It then covers three aspects: 
the concept of general anomalies, concepts related to image anomaly detection, and industrial defects, providing an 
overview of industrial defect detection in these areas. It also summarizes the current state of development, as well as the 
advantages and disadvantages of each aspect. Additionally, the article identifies the limitations of industrial detection 
methods in practical industrial applications. Finally, it looks forward to the future development trends and potential 
research directions in this field, aiming to inspire future research.
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1 Introduction
With the rapid development of global manufacturing and 
the continuous improvement of automation levels, high-
efficiency and high-quality production have become the 
key to corporate competitiveness [1]. In this context, 
industrial defect detection has become increasingly 
important as an important link in ensuring product quality 
[2]. Traditional defect detection methods mostly rely on 
manual visual inspection. Still, this method is inefficient 
[3], has accuracy limited by the experience and subjective 
judgment of the inspector, and is easily affected by fatigue 
and distraction. Therefore, finding more efficient and 
accurate industrial defect detection methods has become 
important in industrial automation and intelligence.
With the rapid improvement of computing power and the 
development of artificial intelligence technology, especially 
the successful application of deep learning in image processing 
[4] and pattern recognition [5], industrial defect detection 
possibilities have been provided. Deep learning technology 
[6], especially the application of convolutional neural networks 
(CNN) [7][8], has shown its excellent image recognition 
capabilities in many fields. These technologies can automatically 
learn complex features from large amounts of image data, 
greatly improving the accuracy and efficiency of detection, 
especially showing great potential in dealing with complex or 
subtle defects.
Nonetheless, applying deep learning technology to 
industrial defect detection still faces many challenges. 
The first is the reliance on large amounts of labeled data, 
which is often difficult to meet in industrial applications. 
The second is the generalization ability of the model 

in different production environments, which requires 
the algorithm not only to perform well in a specific 
environment but also to adapt to changing industrial 
production conditions. In addition, the demand for real-
time detection also places higher requirements on the 
computational efficiency of the algorithm. To solve these 
problems, researchers have begun exploring new learning 
paradigms such as semi-supervised, transfer, and self-
supervised learning and try to apply these methods to 
industrial defect detection.
This article aims to provide a comprehensive review of 
industrial defect detection technology based on deep 
learning. We first reviewed the development history of 
industrial defect detection methods, from early manual 
detection to today’s deep learning technology. This 
development process not only the progress of computing 
technology andening of pattern recognition theory. 
Subsequently, this article briefly introduces the specific 
application of deep learning technology in industrial 
defect detection, including common network architectures, 
learning strategies, and application cases of these methods 
in actual industrial environments. We particularly focus 
on comparing the effectiveness of different deep learning 
methods in dealing with various industrial defects and 
analyze the advantages and limitations of these methods.
Furthermore, we discussed the challenges faced by 
industrial defect detection in practical applications, such 
as insufficient data, model generalization capabilities, and 
real-time detection requirements, and proposed possible 
solutions and research directions. Finally, this article looks 
forward to the future development trends in this field, 
including the combination of deep learning technology 
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with other cutting-edge technologies (such as edge 
computing cloud computing), as well as potential research 
directions such as adaptive learning and autonomous 
decision-making in intelligent manufacturing, aiming to 
provide Future research on industrial defect detection 
provides deeper insights.
2 Related Methodology

2.1 Anomaly Detection
2.1.1 Theoretical Framework of Anomaly Detection

In industrial defect detection, anomaly detection is 
a crucial link, identifying products or processes that 
do not meet expected production standards or quality 
requirements. Abnormalities can manifest as size, color, 
texture, or functionality deviations. In theory, anomaly 
detection is identifying rare items, events, or observations 
in data that deviate significantly from most of the data [9]
[10]. The core challenge of this detection lies in defining 
“normal” and “abnormal,” which depends not only on the 
specific application scenario but also on the characteristics 
of the data set.
2.1.2 Anomaly Detection Methodology

In deep learning, neural network-based anomaly detection 
methods have made significant progress. These methods can 
be broadly classified into supervised learning, unsupervised 
learning, and semi-supervised and self-supervised learning. 
Supervised learning requires large amounts of labeled data 
to train a model to distinguish between normal and abnormal 
conditions, such as using convolutional neural networks for 
image classification. Unsupervised learning methods, without 
labeled data, attempt to learn the normal patterns of the data 
and identify anomalies that deviate from these patterns, such 
as autoencoders [11] and clustering algorithms [12]. Semi-
supervised [13][14] and self-supervised learning [15] combine 
the advantages of labeled and unlabeled data and improve the 
accuracy of unsupervised learning through a small amount of 
labeled data.

2.1.3 Challenges and coping strategies

The main challenges facing industrial defect detection 
include high-dimensional data processing, environmental 
noise and changes, and the need for real-time detection. 
Processing high-dimensional data requires algorithms 
that can effectively extract key features. Environmental 
noise and lighting changes in industrial environments 
may affect detection accuracy. In addition, since industrial 
applications usually require fast response, this places 
requirements on the computational efficiency of the 
algorithm. To address these challenges, researchers 
are exploring more efficient data processing methods, 
improving algorithms to adapt to environmental changes, 

and optimizing algorithms to meet real-time processing 
needs.
2.1.4 Development trends and future directions

The current main development trends of deep learning in 
anomaly detection include ensemble learning and the use 
of deep network structures, such as deep autoencoders 
and deep generative models, to improve the sensitivity 
and accuracy of detection. In addition, the application of 
cross-domain transfer learning is also increasing, using 
models pre-trained in other domains to improve the 
model’s performance in specific industrial applications. At 
the same time, researchers are also focusing on improving 
the interpretability of models and optimizing algorithms 
to meet the needs of real-time processing, which is crucial 
for industrial applications.

2.2 Image Anomaly Detection
2.2.1 Theoretical Framework for Image Anomaly 
Detection

Image anomaly detection plays a vital role in industrial 
defect detection [16][17][18]. This process involves 
identifying patterns or features in image data that deviate 
from normal production or quality standards. Image 
anomalies usually manifest as irregular changes in the 
size, shape, color, texture, and other visual characteristics 
of products or materials. In theory, this detection focuses 
on identifying a small number of abnormal images from 
many normal images. Image anomaly detection is more 
complex than general data anomaly detection because it 
needs to process high-dimensional data and distinguish 
subtle visual differences while excluding the influence of 
external factors such as lighting or angle changes.
2.2.2 Methodology for Image Anomaly Detection

Image anomaly detection methods can be roughly divided into 
traditional image processing technology and deep learning-
based methods. Before deep learning became popular, traditional 
methods, such as threshold segmentation, edge detection, and 
texture analysis, were widely used. These methods are often 
based on hand-designed features and heuristics. However, with 
the development of deep learning technology, methods based 
on convolutional neural networks (CNN) have become the 
mainstream of image anomaly detection. These deep learning 
methods can automatically learn complex feature representations 
from large amounts of data, improving detection accuracy 
and efficiency. In addition to this, there are autoencoder-
based reconstruction error methods that identify anomalies by 
learning the compression and reconstruction of normal images 
and generative adversarial network (GAN)-based methods 
[19][20] that use generative networks to simulate normal data 
distributions, thereby identifying abnormal patterns.
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2.2.3 Image Anomaly Detection Challenges

Image anomaly detection faces several challenges in 
practical applications. The first is the huge computational 
burden brought by processing high-resolution images, 
which challenges the processing speed and efficiency of 
the algorithm. Secondly, noise, lighting changes, and other 
interference factors in the industrial environment will 
affect detection accuracy. In addition, due to the diversity 
and complexity of industrial image data, the model’s 
generalization ability becomes a key issue. Limitations 
in training data can cause model performance to degrade 
when faced with real-world variability. Therefore, 
developing efficient and robust algorithms that adapt to 
these changes becomes particularly important.
2.2.4 Development Trend of Image Anomaly Detection

Future image anomaly detection technology will likely achieve 
breakthroughs in several key areas. The first is the improvement 
of algorithm efficiency, which includes accelerating the training 
and inference process of deep learning models so that they 
can process high-resolution images in real-time. The second 
is enhancing model generalization ability and robustness, 
which may be achieved by introducing more advanced network 
architectures, such as deeper convolutional networks, ensemble 
learning methods, and attention mechanisms. In addition, 
improving detection accuracy and model interpretability are 
also important directions for future development. To this end, 
researchers may explore combining transfer learning [21]
[22] and reinforcement learning strategies [23][24], as well 
as developing advanced data augmentation and simulation 
techniques to improve the quality and diversity of training data.

2.3 Industrial Defects
2.3.1 Definition and Classification of Industrial Defects

An industrial defect refers to any deviation from 
predetermined product quality standards that occurs 
during the manufacturing process. These defects may be 
caused by factors such as poor quality of raw materials, 
operating errors on the production line, aging or failure 
of mechanical equipment, or management errors during 
the manufacturing process. We can divide the defects 
into several categories in more detail: surface defects 
such as scratches, cracks, dents, rust, oil stains, color 
differences, etc.; dimensional defects, including product 
sizes that are too large or too small. Typically caused 
by worn or improperly calibrated equipment; structural 
defects, such as voids, inclusions, or unfused areas within 
the material, which can significantly affect the strength 
and durability of the product; and functional defects, 
which often manifest as The performance of the product 
during use does not meet expectations, such as circuit 

failure in electronic equipment or power transmission 
problems in mechanical equipment. Properly identifying 
and classifying these defects is critical to ensuring product 
quality and production efficiency.
2.3.2 Detection Methods for Industrial Defects

Traditional industrial defect detection methods mainly rely 
on manual visual inspection and rule-based automated 
inspection systems. Although manual inspection is 
flexible, it is inefficient and susceptible to the operator’s 
subjective judgment and fatigue. With the advancement 
of technology, automated inspection technology has 
gradually developed, including non-destructive inspection 
technologies such as visual inspection systems based on 
image processing, ultrasonic inspection based on sound 
waves, and radiation inspection based on electromagnetic 
waves. Based on these technologies, the application 
of deep learning has brought revolutionary progress to 
automated detection. The advantages of deep learning, 
especially convolutional neural networks (CNN), in 
image recognition and classification, make it effective 
in identifying defects from complex image data. In 
addition, with the continuous development of technology, 
automated inspection systems can detect the presence of 
defects and classify and evaluate the type and severity of 
defects.
2.3.3 Challenges

In the practical application of industrial defect detection, 
many challenges still need to be solved. First, data 
acquisition and quality control are a major challenge. For 
machine learning-based methods, high-quality and large 
amounts of labeled data are essential, but obtaining such 
data in actual production processes is often difficult and 
costly [25][26]. Secondly, the generalization ability and 
adaptability of the model is another important challenge. 
Due to the diversity of production conditions, a model 
trained from one production environment may not directly 
apply to another. In addition to the demand for real-time 
detection, the detection system must have the ability to 
respond quickly while ensuring accuracy. This requires 
detection algorithms that are accurate, efficient, and 
capable of performing real-time analysis without slowing 
down the production line.
2.3.4 Future development trends

Looking ahead, industrial defect detection will likely see 
significant advancements in several key aspects. With the 
continuous development of deep learning technology, it 
is expected that more advanced network architectures and 
learning algorithms will emerge, further improving detection 
accuracy and efficiency. For example, the model’s ability to 
identify complex defects can be improved by integrating deep 
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learning models or using more complex network structures, 
such as residual networks or self-attention mechanisms. At the 
same time, toto improve the model’s generalization ability and 
adaptability, researchers may explore more transfer learning and 
meta-learning methods. In addition, with the development of 
edge computing and cloud computing technologies, combining 
these technologies with industrial defect detection can achieve 
more efficient data processing and flexible resource allocation. 
In terms of hardware, higher-performance computing platforms, 
and more accurate sensors will also further enhance the 
capabilities of detection systems. In addition, as augmented 
reality (AR) [27] and virtual reality (VR) [28] technologies 
mature, applying these technologies to the process of industrial 
defect detection and repair can provide more intuitive visual 
assistance, thereby improving the efficiency and accuracy of 
inspection and repair.
3 Discussion and Outlook

3.1 Discussion
This article reviews industrial defect detection technology 
based on deep learning, revealing its importance 
and application potential in modern manufacturing. 
Deep learning, especially the superior performance of 
convolutional neural networks in image processing, has 
become the key to improving the accuracy and efficiency 
of defect detection. However, these technologies 
also face many challenges. First, the success of deep 
learning models relies heavily on large amounts of high-
quality labeled data, which is often difficult to obtain in 
actual production environments. Second, the model’s 
generalization ability is another key issue, especially 
in diverse and changing industrial environments. In 
addition, the demand for real-time detection places higher 
requirements on the algorithm’s computational efficiency 
and response speed.
Although deep learning shows great potential in industrial 
defect detection, it is not a panacea. Further research is 
still needed to improve detection accuracy and reliability 
in some complex or subtle defect detection scenarios. For 
example, small cracks or subtle color changes may be 
difficult for traditional deep-learning models to identify 
accurately. In addition, the interpretability of deep 
learning models is also an important research direction, 
especially in safety-critical applications such as aerospace 
and medical device manufacturing.

3.2 Outlook
In the future, industrial defect detection technology based 
on deep learning will continue to develop and may achieve 
breakthroughs in the following aspects. First, algorithmic 
innovation will be a key factor driving the development 
of this field. By introducing more advanced deep learning 

models, such as variational autoencoders (VAE) and 
generative adversarial networks (GAN), as well as 
emerging learning paradigms, such as transfer learning, 
meta-learning, and self-supervised learning, the model can 
be further improved in limited or performance in the case 
of unlabeled data, while enhancing its adaptability and 
generalization capabilities.
Secondly, developing real-time detection technology 
will make industrial defect detection more efficient 
and reliable. With advances in computing hardware, 
such as more powerful GPUs, dedicated deep learning 
accelerators, and algorithm optimization, processing high-
resolution images and complex data in real-time will 
become more feasible.
Another important development direction is to improve 
the interpretability and user-friendliness of the model. In 
industrial applications, models not only need to provide 
accurate detection results but also need to be able to 
explain their decision-making processes to engineers 
and operators. This is critical to increasing user trust and 
acceptance of automated systems.
Finally, it is expected that future industrial defect detection 
will not only be limited to traditional defect identification 
but will also expand to production process optimization 
and predictive maintenance. Through continuous analysis 
of production line data, early warning of potential 
problems can be achieved, thereby reducing downtime 
and improving production efficiency and product quality.
4 Conclusion
This article reviews industrial defect detection technology 
based on deep learning and discusses its applications and 
challenges in modern manufacturing. We first reviewed 
the development history of industrial defect detection, 
from the initial manual detection to modern automation 
and intelligent technology, especially the introduction 
of deep learning technology, marking a major change in 
this field. The advantages of deep learning, especially 
convolutional neural networks, in image recognition and 
classification, provide an effective tool for identifying 
and classifying various industrial defects, significantly 
improving the accuracy and efficiency of detection.
However, we also point out the challenges of applying 
deep learning to industrial defect detection, including 
reliance on large amounts of labeled data and model 
generalization.
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