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Moving museums into the Metaverse
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Abstract
In recent years, the fusion of advanced technologies with virtual reality has opened new cultural preservation and 
engagement avenues. This dissertation explores the innovative application of Neural Radiance Fields (NeRF) technology 
in transcending the boundaries of physical museums and transporting their treasures into the metaverse. While classical 
computer vision has seen substantial progress, a developing intersection exists between NeRF and cultural heritage 
preservation. This study bridges this gap by introducing an approach that amalgamates NeRF techniques with the rich 
cultural wealth of museums.
The conventional museum experience is extended into the metaverse through a novel methodology that leverages 
NeRF’s capabilities. The core objective is to enable individuals to explore digitized museum artifacts with unparalleled 
realism. NeRF technology captures intricate visual details and enables immersive interactions by rendering scenes with 
volumetric precision, transforming how cultural artifacts are experienced and understood.
This dissertation delves into the technical intricacies of integrating NeRF technology into the metaverse. The 
implementation involves the reconstruction of 3D artifact models. The results underscore the potential of NeRF to 
reshape the cultural heritage landscape by bridging the gap between traditional museums and the boundless possibilities 
of the metaverse.
Keywords: Neural Radiance Fields (NeRF), Virtual Reality, Metaverse, Cultural Heritage, Museum, Digital 
Preservation

1. Introduction
1.1 Background and Motivation
The Metaverse[1] is a virtual digital world consisting of a 
computer-generated virtual reality environment designed to 
simulate the real world and provide a way to interact with it. 
It is a comprehensive virtual space that can contain a variety 
of virtual worlds, virtual reality, augmented reality, and other 
interactive virtual experiences.
The metaverse concept originated from science fiction 
literature and movies and has recently gained increasing 
attention in the technology industry. It is seen as a new 
computing platform that extends the real world and can 
redefine how people interact with computers and people 
with each other.
In a metaverse, users can enter virtual environments 
through virtual reality devices (such as head-mounted 
displays, gloves, or holographic projections) to interact 
with other users, explore virtual geographic spaces, 
participate in virtual economic activities, create content, 
or experience virtual entertainment and social interactions.
The metaverse concept is still evolving, and no unified 
definition exists. Different companies and organizations 
may understand and implement the idea of the metaverse 
in different ways. However, the metaverse generally 
represents a future vision of virtual reality that could 

redefine how humans interact, socialize, entertain, and 
work.
The Metaverse has four key features that have helped it 
gain acceptance and reach the masses. First, highly social--
--the Metaverse can transcend the limits of space and share 
a “physical” environment with people worldwide. This will 
profoundly change the way we communicate and interact with 
each other. The Metaverse provides a world that is a breathing, 
living, parallel reality that can serve all of the world’s inhabitants 
continuously and in real time. It is hugely scalable, enabling 
the simultaneous coexistence of hundreds of millions of virtual 
characters worldwide. Second, persistence----the Metaverse 
will never pause or stop but will last indefinitely. The Metaverse 
is not limited by hardware, from computers to consoles to 
cell phones, and everyone can interact in the Metaverse with 
different types of devices. Third is interoperability- using open-
source code and encryption protocols, the Metaverse can provide 
unprecedented interoperability of data, digital items/assets, and 
content in every experience. The Metaverse can make the digital 
world a shopping mall, where each store can use its currency 
with a proprietary universal ID.[2] Fourth, economic benefits-
---as a digital species, we will witness further transformation 
in the Metaverse. In the future, the Metaverse will likely be 
seen as a legitimate workplace and investment vehicle, offering 
rich content and becoming a vibrant emerging community. The 
Metaverse will allow users to create, invest in, own, rent, sell, 
or buy services as they would in the real world.[3] The future 
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form of the Metaverse is given to us in Sword & Sworcery, Top 
Gun, and Second Life. In addition, Disney’s Wreck-It Ralph 2 
also fits my understanding of the Metaverse: we enter the online 
world with a cyber doppelganger, not an off-screen player. After 
entering the metaverse, “I” can chat with friends, go shopping, 
work, or enter any game to fight; except for eating and sleeping, 
“I” can live in this virtual real world, which is more interesting 
than reality.
Here are some specific examples of elements that can be 
part of the metaverse:
a .  Vir tual  Worlds:  These are  immersive digi ta l 
environments where users can explore and interact with 
various objects, landscapes, and other users. Examples 
include games like “Fortnite” and “Minecraft,” as well as 
virtual worlds like “Second Life.”[4]
b. Social Platforms: Platforms like Facebook’s Horizon 
Workrooms, Rec Room, and VRChat enable users to 
interact with others in virtual spaces, attend events, and 
engage in activities together.
c. Augmented Reality (AR) Applications: While the 
metaverse is primarily associated with virtual reality, 
it can also include augmented reality experiences. AR 
applications like Pokémon Go and Snapchat filters overlay 
virtual elements onto the real world, creating interactive 
and immersive experiences.
d. Virtual Conferences and Events: The metaverse can 
host virtual conferences, concerts, exhibitions, and other 
events where people worldwide can participate and 
interact with each other in a virtual environment. For 
example, the virtual concert series “Fortnite Presents” has 
featured performances by popular musicians.
These examples illustrate some diverse aspects that 
can be part of the metaverse, but it’s important to note 
that the concept is still evolving. New experiences and 
technologies will continue to shape its development.

1.2 The Relationship between Museums and 
the Metaverse
With the rise of the metaverse concept, museums 
worldwide have started to “move” into the metaverse, 
transforming museum exhibits and cultural heritage 
into digital form and presenting them to audiences more 
diversely and interactively. This trend not only brings 
new ways of display to traditional museums but also 
provides a richer and more interesting cultural experience 
for visitors. Here are some of the highlights of metaverse 
displays in museums worldwide: Multi-media displays: 
Metaverse galleries can display static images and text 
and present exhibits through multiple media such as 
video, sound, and animation. This multi-media display 
allows visitors to gain a deeper understanding of the 
stories behind cultural relics, artworks, and other exhibits, 

enhancing the interactivity and interest of the cultural 
experience. Exhibition across time and space: The meta-
universe exhibition hall can present exhibits from different 
eras and regions in a virtual way, allowing visitors to 
travel through time and space and experience the charm of 
different cultures

Fig.1: The Smithsonian’s Arts and Industries 
Building (AIB) and Meta Immersive Learning 
will debut “ FUTURES x Meta: Moonwalk”

firsthand. For example, inspired by the real-life 
experiences of Apollo astronauts, the Smithsonian 
National Air and Space Museum has created an innovative 
project called “Moonwalk.” This project combines 
thousands of rare archival images, 3D scans of artifacts 
from the Smithsonian’s collection, NASA mission audio 
recordings, and cutting-edge VR technology to recreate 
the lunar world. It allows visitors to explore previously 
unseen lunar landscapes. Interactive: The meta-universe 
exhibition hall can use virtual reality technology to allow 
visitors to interact with exhibits and enhance their sense 
of participation and experience. For instance, the world-
renowned Louvre Museum offers an online guided tour, 
allowing users to appreciate its precious art collections 
remotely.

Fig.2: The photo of the homepage of the 
Louvre Online Museum

virtual reality technology and explore and observe the 
living habits of dinosaurs in virtual scenes. Social: The 
meta-universe exhibition hall allows for communication, 
sharing, and collaboration among viewers through social 
interaction features. For example, In the Metropolitan 
Museum of Art’s Metaverse Gallery in New York, one can 
visit the exhibition with other visitors, explore cultural 
heritage together, and share their insights and feelings. 
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But there are many difficulties in promoting this project: 
to build a “digital community” and to make it “interactive,” 
there is still a lack of a large interconnected platform, that 
is, a virtual world where all museums and their visitors 
can communicate and participate with each other at the 
same time. The portal is still lacking. In addition, the 
construction of the metaverse is still in the exploratory 
stage, with many uncertainties and immaturity, and a 
series of rules and systems are needed to support its 
normal operation.

1.3 Technology and Challenges of Digitizing 
Museum Exhibits
To accurately recreate the museum’s exhibits and 
environment in the metaverse, 3D scanning and modeling 
are required. This can be achieved through laser scanners, 
photographic techniques, or depth sensors. The scanned 
data can create realistic 3D models for display in the 
metaspace. However, these methods may face the 
following problems in their implementation:
a. Large-scale data processing: With many exhibits and 
artifacts in museums, data processing and management 
may face large-scale data challenges. Processing and 
storing large amounts of 3D scan data, high-resolution 
images, and metadata may require huge computing and 
storage resources.
b. Technical requirements and equipment costs: Using 
laser scanners, photographic equipment, and depth sensors 
requires certain technical knowledge and specialized 
equipment. Acquiring these devices may require a high-
cost investment and specialized personnel to operate and 
maintain the equipment.
Laser scanners use laser technology for 3D data capture 
and modeling. It captures a target object’s geometry and 
surface details by emitting a laser beam and measuring 
the reflection time and intensity between the laser beam 
and the target object. The working principle of the laser 
scanner is based on the principle of propagation and 
reflection of the laser beam at the speed of light. By 
measuring the time difference between the laser beam 
and the target object, the propagation distance of the laser 
beam can be calculated. Combined with the position and 
angle information of the scanner, the 3D coordinates 
and geometry of the target object can be obtained. A 
complete 3D model of the target object can be obtained 
by scanning and measuring several times. Laser scanners 
are widely used in many fields, including engineering 
and construction, manufacturing, cultural heritage 
preservation, and digital reconstruction. It can acquire the 
geometry and details of the target object in a non-contact 
and high-precision manner, providing essential data for 
real-time measurement, modeling, and visualization. Laser 

scanners have some disadvantages, including a.Expensive: 
High-quality laser scanners are usually expensive, which 
may not be feasible for some projects with limited budgets 
or for personal use. b. Dependence on external conditions: 
Laser scanners require high environmental conditions. For 
example, it requires high light stability and reflectivity, so 
accurate scanning results may not be obtained on surfaces 
with unstable or low reflectivity. c. Slower scanning 
speed: It takes time for laser scanners to perform accurate 
scanning, especially for complex scenes or large objects; 
the scanning time may be longer. This can cause the 
scanning process to become time-consuming and create 
some limitations for real-time applications or projects 
that require fast results. d. Post-processing required: The 
raw data acquired by the laser scanner needs to be post-
processed and aligned to produce an accurate 3D model. 
These post-processing steps may require specialized 
software and skills, increasing the complexity and effort 
of data processing. e. Inability to capture internal details: 
Laser scanners are mainly used to capture the target 
object’s external geometry and surface details, while 
detailed information on the internal structure or details of 
the object is not available.
There are also several drawbacks to using photographic 
techniques to bring museums into the metaverse, including 
limitations in data acquisition: Photographic techniques 
rely on taking photographs to capture the museum’s 
exhibits and environment. This means that
Each exhibit needs to be photographed individually in 
the real world, which can require significant time and 
human resources. In addition, direct photography may 
not be possible for some special or sensitive exhibits, 
resulting in incomplete or missing data. b. Limits the 
three-dimensional information of objects: Photography 
technology mainly captures two-dimensional images of 
objects without access to complete three-dimensional 
information. This means that the geometry and three-
dimensionality of some objects may be lost when 
presented in the metaverse, limiting the user’s visual 
experience. c. Limitations of texture and detail: 
Photography techniques have limitations on capturing 
the texture and detail of objects. The resolution of the 
camera and the shooting conditions may affect the quality 
of the image and the visibility of details. This may result 
in objects displayed in the metaverse lacking fine textures 
and details, affecting the user’s realistic perception. 
d. The complexity of data processing and integration: 
Integrating and processing large amounts of photographic 
data into usable models and scenes requires complex data 
processing and computation. This may require computer 
vision and graphics processing techniques to process 
and reconstruct scenes, increasing the complexity and 
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time cost of data processing. e. Challenges of change 
and updating: Museums’ exhibits are often dynamic and 
may have new exhibits added or old ones replaced. Data 
captured and presented using photographic techniques are 
difficult to update and reflect these changes in real-time, 
requiring additional data collection and processing efforts.
There are also some drawbacks to using depth sensors 
to move museums into the metaverse, including a. 
Limited range: Depth sensors typically have a limited 
range. Although the measurement accuracy is high at 
close distances, depth sensors may not provide accurate 
depth information at longer distances. This may lead 
to inaccuracies or ambiguities in the objects’ depth in 
the metaverse. b. Sensitive to lighting conditions: The 
performance of the depth sensor may be affected by 
lighting conditions. Intense lighting or excessively dark 
environments may degrade the performance of the depth 
sensor, resulting in inaccurate depth measurements. 
In museums, lighting conditions may be inconsistent, 
especially in specific exhibition areas, which may 
challenge using depth sensors. c. Limitations on textured 
and transparent objects: Depth sensors acquire depth 
information primarily by projecting infrared light and 
measuring the reflection time. Therefore, for surfaces 
lacking texture or transparent objects, the performance of 
the depth sensor may be degraded and unable to provide 
accurate depth data. This may cause problems with 
some specific objects or exhibits in the museum. d. Data 
processing and noise: The raw data acquired by the depth 
sensor may contain noise or incomplete information. This 
requires data processing and filtering to remove the noise 
and extract accurate depth information. The complexity 
and computational effort of data processing depend on the 
sensor type and the data quality. e. Challenges for dynamic 
scenes: If there are dynamic scenes in the museum, such 
as moving people or exhibits, depth sensors may need to 
be able to capture and track these dynamic changes in real 
time. This may require a combination of other sensors or 
technologies to enable real-time dynamic scene capture 
and presentation.
The subjectivity of data annotation and description, 
copyright and legal issues,  user experience and 
technological adaptability, and data security and privacy 
protection are key considerations when moving a 
museum into the metaverse. The metadata annotation 
and description of exhibits require expertise and may 
involve different interpretations from various experts. 
Coordinating and making trade-offs becomes essential in 
such cases.
Additionally, copyright and legal issues arise when 
digitizing exhibits, requiring permission from relevant 
rights holders. User experience and technological 

adaptability are crucial to providing an immersive 
and interactive experience. Ensuring the performance, 
stability, user-friendliness, and acceptance of virtual and 
augmented reality technologies poses challenges. Lastly, 
safeguarding valuable cultural heritage data involves 
encryption, access rights control, and data backup to 
protect data security and privacy.
Bringing museums into the metaspace requires data 
collection and training through 3D scanning, photography, 
data annotation, and description. This requires technical 
expertise, expert knowledge, and community engagement 
to ensure the museum experience in the metaverse is 
accurate, rich, and interactive. The tools needed to do this 
can be expensive and time-consuming, but we can now 
use NERF to bring museums to museums.

2. NeRF technology: a revolutionary 
approach to 3D scene modeling
Recently, many researchers have begun to explore whether the 
profound neural network revolution can make it possible for 
everyone to have the ability to capture such 3D scenes, making it 
as easy as taking a photograph. One innovation, sparked in 2020 
by the paper “Neural Radiance Fields (NeRF) Neural Volume 
Rendering, an innovative technology sparked by the paper 
“Neural Radiance Fields (NeRF)” in 2020, has grabbed the 
attention of people. This new technique accepts multiple images 
as input to generate a compact representation of a 3D scene using 
a deeply fully connected network whose global can be stored in 
a file that is not much larger than a typical compressed image.[5] 
With this representation and recording method, the model can 
be The NeRF function obtains information about the color and 
density of points in a 3D space, but when a camera is used to 
image the scene, a pixel on the resulting 2D image corresponds 
to all consecutive spatial pixels on a ray from the camera. When 
a camera imagines the scene, a pixel on the resulting 2D image 
corresponds to all consecutive spatial points on a ray that starts 
from the camera. We need the rendering algorithm to obtain 
the final rendered color of this ray from all points on this ray. 
Rendering color from all points on this ray. NeRF is very cool 
and provides a way to change the ray’s color from all points on 
the ray. NeRF is very cool and offers a new form of 3D scene 
modeling.

3. Data Collection and Processing 
Techniques
3.1 Building Your Own NeRF Dataset
However, the dataset provided by the NeRF source code 
is not enough to meet the research needs of many topics, 
so it is crucial to make your own NeRF dataset. the first 
step is to collect the data and then use COLMAP to obtain 
the camera position.
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3.2  Working  Pr inc ip les  and Steps  of 
COLMAP
The principles of Colmap can be summarized in the 
following main steps:
Feature Extraction and Matching: Features are extracted 
from the input images, typically using algorithms like 
SIFT (Scale-Invariant Feature Transform) or ORB 
(Oriented FAST and Rotated BRIEF). Then, feature-
matching algorithms, such as those based on feature 
descriptors, find corresponding feature points across 
multiple images.
Camera Pose Estimation: Using the matched feature points, 
Colmap can estimate the camera poses, i.e., the position and 
orientation of the cameras in the images.[6] This process is 
known as camera pose estimation or camera localization.[7]
Initial 3D Reconstruction: Based on the estimated camera 
poses, Colmap uses triangulation techniques to convert 
the matched feature points into 3D points, thus building 
an initial 3D reconstruction model.
Incremental  Reconstruct ion:  Colmap adopts  an 
incremental  reconstruction approach,  gradually 
incorporating more images and feature points. New 
images are matched against the existing reconstruction to 
refine the reconstruction results further.
G r a p h  O p t i m i z a t i o n :  D u r i n g  t h e  i n c r e m e n t a l 
reconstruction process, due to possible noise and errors 
in feature matching, Colmap performs global graph 
optimization to improve the accuracy of camera poses and 
3D points.
Dense Reconstruction (Optional): If a more detailed 3D 
reconstruction is desired, Colmap also supports dense 
reconstruction. It utilizes pixel-level information between 
images to estimate scene depth, resulting in a denser point 
cloud.[8]
In summary, the principles of Colmap involve feature 
extraction and matching, camera pose and 3D point 
estimation based on matched features, incremental 
reconstruction with global optimization, and optional 
dense reconstruction for a more detailed 3D model.

Fig.3: Principle of COLMAP[9]

3.3 Practical Museum Data Collection
I went to some museums in my area to collect data, such 
as Xi’an Museum, Xi’an History Museum, Xi’an Beilin 
Museum, etc. The artifacts I selected are more three-
dimensional, such as porcelain, Buddha statues, and so on. 
I did not choose some flat artifacts, such as calligraphic 
works or murals, because these flat artifacts can be shown 
very well with photos. It is not necessary to use Nerf to 
help it realize the 3d reconstruction, and it is not as good 
as those more three-dimensional artifacts in the final 
result.
Some requirements when shooting:
a. When going to a museum, the number of images taken 
of an artifact should not be too small; I took about 40 
images of the artifact I was focusing on trying to recreate 
and about 20 images of the others. I took 180 photos of 6 
subjects, 168 valid photos.
b. You have to ensure a relatively obvious overlap of 
scenes from picture to picture.
c. The lighting situation of each picture must not be 
significantly different, the lighting situation of the scene 
must not be too bad, and the camera exposure must be 
locked for scenes with large lighting variations.
d. Try not to have dynamic blur; obvious dynamic blur 
will affect the reconstruction quality and training results.
e. The background also needs attention; if the background 
is not well differentiated from the object, it needs to be re-
shot, and the object should account for about 90% of the 
whole photo.
My method is to find a good angle, keep the distance 
between me and the artifact, and then shoot 360 degrees 
around the artifact to make sure that these photos can 
present the complete details of the artifact. It is okay if 
one photo can’t present all the details, you can take more 
photos, as long as all the photos include the details of each 
part of the object.

3.4 Considerations in Dataset Creation
a. The size of all the pictures must be the same. Otherwise, 
COLMAP cannot complete the feature extraction.
b.  COLMAP reconstruction may consume many 
memory resources; if there is a flashback, the CPU/GPU 
memory is likely insufficient. You can not use high-
resolution images, but the resolution is too low may fail 
to successfully match the location, or if the location does 
not allow, you should use the maximum resolution of the 
image as memory allows.
c. When using COLMAP to get the camera pose, I tried 
to format the pose data using the LLFF script and got an 
ERROR: Unable to access the correct camera pose for 
the current point. This problem can be caused by some 
images not matching the pose; you can try to pick out the 
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matching images to re-match the pose or delete the images 
that don’t match the pose.

4 .  B u i l d i n g  N e R F  N e t w o r k 
Components

Fig.4: Network structure diagram of NERF[10]
In the NERF framework, the construction of network 
components is central to achieving its outstanding 
performance.NERF’s network structures all include:[11]
a. Input Layer: Leading the Transformation from Image 
Coordinates to Scene Representation
The input layer of NERF plays a key role in the 
complexity of mapping image coordinates to models. By 
utilizing the image coordinates (x, y), we defi ne a network 
of rays starting from the camera position. These rays cross 
the image plane and intersect objects in the 3D scene, 
paving the way for subsequent scene sampling.
In NERF, the input coordinates are considered the 
direction of the rays emanating from the camera center. 
In practical implementations, these 2D image coordinates 
are often fused with known camera parameters (e.g., focal 
length, aperture, etc.) to compute the ray’s starting point 
and direction. This flexible input mechanism initiates 
converting from 2D image coordinates to 3D entities.
b. Encoder: Leading the Abstraction Journey
The encoder plays the role of the starting stage in the 
NERF architecture, whose task is to transform the initial 
2D image coordinates into a latent, low-dimensional 
representation z.
This hidden representation captures the scene’s local 
features and structural information, which provides the 
input for the work of the decoder.
The design of an encoder may contain multiple fully 
connected layers, each responsible for mapping the 
input features to a higher-dimensional representation. In 

this process, the encoder progressively extracts abstract 
features from the input coordinates, supporting the 
decoder to reconstruct the scene details better.
c. Decoder: lighting up the scene synthesis fi eld
At the heart of the NERF network is the decoder, which 
receives the potential representation $z$ generated 
by the encoder and reveals the brightness of each 3D 
scene component. The decoder converts these hidden 
representations into lighting, color, and geometric 
information about the scene.
The decoder typically consists of multiple fully connected layers 
that progressively map the hidden representations to higher 
dimensional representations to reconstruct the details of the 
3D scene.[12] Each fully connected layer captures the scene 
information at a different level, progressively enriching the 
representation from global to local.
d. Perspective Sampling: Sculpting Perspectives through 
Synthesis
To generate images from different viewpoints, NERF 
employs a viewpoint sampling layer, a key link to retrieve 
the corresponding radiometric values from the decoder. 
These values are used to synthesize images based on 
parameters such as camera position and orientation.
The viewpoint sampling layer extracts the scene 
information corresponding to the new viewpoint from the 
output of the decoder, thus enabling the ability to view the 
scene from diff erent angles. This step is crucial in NERF’s 
computation of accurate lighting and shading eff ects based 
on diff erent viewpoints.
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By carefully coordinating the interactions between these 
components, the NERF network architecture can infer 
complex structural and appearance information about 
a 3D scene from simple 2D image coordinates. This 
comprehensive modeling capability has enabled NERF 
to succeed remarkably in image synthesis and scene 
reconstruction.

5. Experimentation and Results
5.1 NERF Model Training and Challenges
While training the NERF model, we face several problems 
and challenges related to the following:
a. Memory and computational requirements: The training 
of NERF models involves many computational operations, 
including forward propagation, backpropagation, and parameter 
updating.[13] These operations require storing information such 
as network
Parameters, activation values, gradients, etc., in memory 
and performing matrix multiplication and other operations. 
These computational and memory requirements increase 
significantly, especially when processing high-resolution 
images and complex 3D scenes. For NERF training with 
high-resolution images and complex scenes, you should 
use a graphics card with a large memory capacity, such 
as 16GB, 32GB, or higher. This ensures that the model 
parameters and intermediate computation results can be 
accommodated in memory to avoid memory overflow 
problems. Image resolution refers to the number of pixels 
in the input image. For training NERF models, it is usually 
recommended to use medium to high-resolution images. 
For example, the image resolution can be 512x512, 
1024x1024, or even higher. Higher image resolution helps 
to capture details and the geometry of the scene. Video 
memory capacity is an important factor when considering 
the appropriate image resolution.
In cases where the GPU has 16GB of VRAM, for 
example, careful consideration should be given to 
balancing image resolution with memory limitations. This 
memory allocation provides a way to train NERF models 
on medium-sized images. Resolutions in the range of 
512x512 to 1024x1024 are viable options as they allow 
key details and geometric features to be captured within 
the limits of available memory. It is worth noting that 
while 16GB of VRAM may impose some limitations, 
it is still possible to train at resolutions that provide 
satisfactory visual fidelity and training stability.
With the expansion to 32GB of VRAM capacity, training 
NERF models on high-resolution images becomes more 
feasible. This opens up the possibility of capturing finer 
details and complex scene geometry. Image resolutions 
from 1024x1024 to 2048x2048 can be pursued with 

confidence. These resolutions allow the model to capture 
detailed information from the scene, resulting in visually 
richer images.
However, even with enhanced VRAM, the choice 
of resolution requires careful judgment. Balancing 
computational resources and training efficiency is 
still critical, and higher resolutions may require more 
computational resources and training time.
b. Insufficient data: NERF requires a large amount of 
diverse and appropriate data for training. The model may 
have difficulty generalizing to new scenes or perspectives 
if the dataset is small or biased.
c. Perspective differences: The NERF model may 
generalize poorly to unseen perspectives if the training 
data does not cover a wide range of perspectives. This 
may result in artifacts or inaccuracies when rendering 
images from new viewpoints.
d. Depth ambiguity: NERF models may have difficulty 
handling scenes with depth ambiguity, such as transparent 
or reflective surfaces, occlusions, or scenes with 
significant depth variations.
e. Long Training Time: Training a NERF model can 
be time-consuming, especially if complex network 
structures or large datasets are used. Trying different 
hyperparameters may also increase the training time.
f. Overfitting: Given the flexibility of neural networks, 
NERF models may be susceptible to overfitting problems, 
especially when training data is limited. Regularization 
techniques and careful tuning of the network structure and 
hyperparameters can mitigate this problem.
g. Discontinuities and discrepancies: NERF may have 
difficulty capturing sharp discontinuities, such as object 
boundaries or fine geometric details. This may result in 
blurring or artifacts when rendering images.
h. Generalization of new scenes: NERF models are scene-
specific and may have difficulty generalizing to scenes 
significantly different from the training data. Fine-tuning 
or migration learning methods may need to be used.
i. Loss function design: Designing an effective loss 
function is important for training NERF. A wisely chosen 
loss function should balance factors such as image fidelity, 
geometric accuracy, and regularization to ensure that the 
model accurately captures appearance and shape.
g. Hyper-parameter tuning: NERF has various hyper-
parameters, including network architecture selection, 
learning rate, regularization strength, etc. The tuning of 
these hyper-parameters is important to obtain the best 
results. Tuning these hyperparameters is critical for 
optimal performance.
k. Rendering speed: NERF’s original formulation may not 
be suitable for real-time rendering. It may be necessary 
to use multi-level representations or layered methods to 
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speed up rendering.
l. Complex Scenes: NERF may have diffi  culty with very 
complex scenes
with complex geometry or challenging lighting conditions.
[14]

5.2 Problems and Solutions in Model Training
In our experiments, we chose a GPU equipped with 32 
GB of video memory to conduct experiments on image 
synthesis based on the NERF model. We conducted four 
rounds of experiments and achieved relatively successful 
results in the fi nal round. However, we also encountered 
some challenges and problems in the process.
In the fi rst round of experiments, we chose a complexly 
textured bell as the experimental object, which had a 
complex texture and contained elements such as text in 
the background. We used 35 photos as training data, each 
with a resolution of 3042x4032. However, due to the high 
resolution of the images, the GPU with 32GB of video 
memory faced a memory shortage when processing these 
high-resolution images, which prevented the training 
process from proceeding properly. We adjusted the dataset 
by reducing the image resolution to 2000x2666 to better 
accommodate the graphics memory limitation. However, 
even in the second round of experiments, after 10,000 
iterations, we still encountered the same insufficient 
memory problem that prevented the experiments from 
running smoothly.[15]
In subsequent experiments, we turned to a brightly colored 
drum with a relatively simple texture as our subject. 
Although we dropped the complex shelf texture under the 
drum in this
To minimize the difficulty, we resized the image and 
compressed it to 2000x2000. However, regrettably, even 
after 40,000 iterations, we encountered a loss (Loss) and a 
peak signal-to-noise ratio (PSNR) that became NaN.
For this situation, we can consider several potential 
factors. First, numerical stability may be one of the main 
reasons for the loss and PSNR to become NaN. Too 
large or small model parameters may lead to numerical 
instability, affecting the computational results. In 
deep learning, this problem can be mitigated to some 
extent by using numerically stable optimizers, proper 
parameter initialization, and regularization methods. 
Second, gradient vanishing or gradient explosion may 
lead to numerical instability, thus affecting the loss and 
evaluation metrics. A reasonable choice of parameters 
such as activation function, optimizer, and learning rate in 
network training and techniques such as gradient clipping 
can help mitigate this situation.
In addition, data anomalies may also affect the results 
of loss and PSNR calculation. Especially for high-

resolution images, outliers or missing values may lead to 
computational errors, thus aff ecting the training process. 
In the data preprocessing and cleaning stages, outliers 
should be detected and processed to ensure the quality and 
stability of the data.
For optimization problems, it is also crucial to choose 
appropriate optimization algorithms and parameter 
settings. Different problems may require different 
combinations of optimizers and parameters to obtain 
better convergence and stability.
In conclusion, we encountered a series of challenges 
during our experiments, which included issues such as 
image resolution, memory constraints, and numerical 
stability. Although we succeeded in the last round of 
experiments, it reminds us that we need to consider 
various factors during deep learning training and make 
appropriate adjustments and optimizations to obtain stable 
and eff ective training results.

Fig.5: Experimental Result Graph

6. Conclusion
This study aims to explore how museums can be 
introduced into the metaverse through NERF technology 
to provide a new way of exploring culture, art, and history. 
Through in-depth research and practice, we have achieved 
remarkable results and found that NERF technology has 
great potential and promise in transforming museums into 
metaverse experiences.
First, we deeply analyzed the core components of the 
NERF network architecture, including encoders, decoders, 
and perspective sampling. The interaction of these 
components
Provides a viable basis for the meta-universalization of 
museums, which can present artifacts and exhibits in 
museums as high-quality 3D images to the user, enabling 
an immersive virtual visit experience.
Secondly, we applied NERF technology to museum 
meta-cosmopolitanization and successfully simulated the 
visual representation of museum interiors by constructing 
scenarios and utilizing existing digitized artifact data. This 
practice demonstrates the potential of NERF in cultural 
transmission and education, allowing people to get in 
touch with history and cultural heritage.
In addition, we explored the multiple applications 
of museum meta-universes in education, cultural 
exchange, and entertainment. Introducing museums into 
the metaverse can break down geographical and time 
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constraints and enable people to visit museums anytime 
and anywhere, thus expanding the scope and means of 
cultural communication. This provides a new platform for 
educational institutions, cultural institutions, and tourists 
to engage in cultural exploration in a more creative and 
immersive way.
However, we also note the challenges and limitations in 
integrating museums into the metaverse. These include 
aspects of data acquisition and processing, technical 
implementation complexity, and user experience 
optimization. Future research can further focus on these 
issues to promote the further development of museum 
meta-universalization.
In summary, introducing museums into the metaverse 
through NERF technology opens new cultural and 
historical transmission avenues. This innovative research 
provides a new direction for developing the metaverse 
field and positively contributes to protecting and 
transmitting human cultural heritage. We believe that, 
shortly, museum meta-universalization will become a 
brand-new cultural experience, bringing people a broader 
cultural vision and an in-depth learning experience.
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