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Abstract
As a significant carbon dioxide-emitting country globally, China has set a concrete short-term target of carbon dioxide 
emissions peak in 2030 and an ambitious long-term plan to reach carbon neutrality by 2060. One essential policy is to 
set up a carbon trading market to reduce high-pollution enterprises’ carbon emissions by rationally allocating carbon 
quotas among different firms and regions and setting carbon quotas trading market. 
In reality, firms obtain carbon quotas in three ways, initial allocation from the government, carbon market trading, and 
purification. By using carbon quotas, firms are required to meet the limitation of carbon emissions by regulations. To 
help firms make the cost-optimal decision in both short-term and long-term management, this paper focuses on the 
impact and trading of carbon quota for emission-depending firms. 
The short-term optimal production model suits firms less than a year from meeting emission limitation requirements. It 
is considered that during this time, firms cannot upgrade production equipment with less carbon emission but can only 
sell or buy carbon quotas in the carbon trading market. Furthermore, this paper builds a carbon quota price predicting 
model based on the long-short-term memory neural networks(LSTM) method to help firms develop a better trading 
strategy. In the long term, firms can update their technique to less carbon-emitting production technology. Therefore, 
a long-term optimal production model is established, and variable purifying levels are discussed. Finally, this paper 
calculates the optimal production strategy under different restraints of carbon emission.
Keywords: optimal production model; carbon quota; emission permits and trading

1 Introduction
Ever since the world began to pay attention to the impact 
of climate warming on the human living environment, the 
real establishment of a carbon emission trading system 
experienced 20 years of development. After difficult 
negotiations, the IPCC adopted the ‘United Nations 
Climate Change Framework’ in 1992. In December 1997, 
the United Nations Framework Convention on Climate 
Change called for the third Conference of the Parties. 
Representatives from 149 countries signed the ‘Kyoto 
Protocol,’ a complementary document to the United 
Nations Framework Convention on Climate Change, 
hoping to remove greenhouse gases from the atmosphere. 
The Kyoto Protocol stipulates three flexible carbon 
Emission Trading mechanisms: Emission Trading, Clean 
Development Mechanism, and Joint Implementation 
Mechanism. The carbon trading market has emerged.
Carbon trading is a market-based mechanism for reducing 
emissions, and it has been implemented in China since 
2021 when the long-awaited national emissions trading 
system (ETS) was launched. As the largest carbon market 
in the world, China’s carbon trading system will be more 
than ten times larger than California’s, doubling the 
share of global emissions covered under such a system 
and covering approximately one-tenth of global carbon 
dioxide emissions. In the first phase, the market will be 
focused exclusively on the power sector, covering over 

2,200 businesses, comprising more than 40 percent of the 
nation’s emissions, and with plans to incorporate other 
sectors (i.e., steel and cement) - and the regional pilot 
markets - in the future. 
China has set a concrete short-term target of carbon 
dioxide emissions peak in 2030 and an ambitious 
long-term plan to reach carbon neutrality by 2060. To 
achieve such a goal, China’s government mainly uses 
a combination of different jurisdictions-carbon quota, 
carbon tax, offsets(not available after 2017 in China), 
carbon trading scheme, and penalty. Initially, firms will 
receive carbon quota allocation from the government 
for free. When a firm’s carbon emission exceeds its 
initial allocation, it must pay the penalty for emitting 
excessively. However, firms can buy or sell carbon quotas 
in the carbon trading market to reduce emissions and 
avoid penalties. At last, enterprises need to pay taxes 
based on their volume of total carbon emissions.
This paper establishes two mathematical models to help 
enterprises earn the maximum profit under the carbon 
trade system and variable constraints. Section 2 briefly 
reviews the status of China’s carbon trading system and 
theories of carbon quotas. Section 3 explains the LSTM 
model’s function and how it helps carbon market traders 
predict prices and builds two cost-optimal models for 
profit maximization in both short-term and long-term 
situations. And section 4 shows the predicted carbon quota 
price of the LSTM model. Section 5 concluded.
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2 Literature review
The theoretical carbon trading system originates from the 
“emission trading” theory proposed by economist Dales in 
the 1960s. And the solution to the greenhouse gas problem 
in the form of emissions trading is mainly motivated 
by the consideration of “internalizing externalities.” 
Externality was first proposed in 1890, and Pigou further 
proposed two concepts of external diseconomies and 
external economies in Welfare Economics[1]. 
Coase proposed a new idea to solve negative externalities 
by introducing the concept of tradable property rights. 
That is, the behavior that causes negative externalities is 
considered a tradable right. According to Hardin (1968), 
the tragedy of the Commons will occur only when 
individuals treat public resources in their way and use 
unrestrained resources. Due to the lack of property rights 
for goods of public nature, users lack the motivation 
to protect public goods, resulting in their damage or 
disappearance[2]. From this perspective, Coase believed 
that under zero transaction cost and clear property rights, 
voluntary transactions could converge the private cost and 
social cost of economic activities to solve the externality 
problem and realize the optimal allocation of resources.
The production decisions of firms directly affect the 
carbon emissions of firms. When there is a carbon quota 
constraint, the production cost of enterprises changes 
directly due to the increase in carbon cost. Therefore, 
the mechanism and trend of enterprise cost change have 
been studied [3-10]. Taking the article by Damailly D [4] 
and the article by Robin Smale [10] as an example, they 
analyzed the impact of the European carbon trading 
system on the cost and profit of enterprises in different 
ways. They believed that the increase in firms’ marginal 
cost led to reduced output, but the increased product price 
could be greater than the extra cost. At the same time, 
they can also benefit from free emission allocation, so 
firms do not necessarily lose profits from implementing 
a carbon trading system. Based on the cost structure, 
CO2 emissions, electricity consumption, and quota 
allocation data, Tomas RAF evaluated the impact of the 
implementation of carbon quota trading on the chemical 
industry in Portugal. Their study comprehensively 
considered the increase in direct and indirect production 
costs and compared the results with those of other EU 
countries and industries. The results showed that The 
impact of carbon quota trading on the chemical industry’s 
competitiveness in Portugal is not great, which may be 
lower than that of other industrial sectors [3]. Damailly 
D and Quirion P discussed the impact of the EU carbon 
trading system on the competitiveness of the iron and steel 
industry from two aspects of production and profit. The 
study concluded that the constraint of carbon quota did not 
greatly impact the industry’s competitiveness. Therefore, 
the author believed that the opposition to implementing 

stricter emission reduction targets by the EU in the second 
stage of implementing carbon trading should be based on 
other reasons. Not for reasons of loss of competitiveness 
in the industry. 
The author further analyzes the robustness of marginal 
abatement cost, demand, transaction elasticity, and cost 
transfer rate [4]. Chan HS analyzed the changes in the 
competitiveness of power, cement, and steel industries 
due to carbon quota constraints from three levels: unit 
material cost, employment rate, and profit. The research 
shows that the carbon quota constraint does not impact 
the cement and steel industries’ competitiveness. In 
contrast, for the electric power industry, the carbon quota 
constraint positively affects the unit material cost and 
profit. The positive effect on the cost reflects the increase 
of the carbon constraint on the cost of enterprises. 
The increase in profits reflects the behavior of power 
enterprises transferring the cost increase to consumers[6]. 
Lee M analyzed the potential cost increase of Korean 
power enterprises after participating in carbon trading[7]. 
Kara analyzes the impact of a carbon trading system on 
the Nordic electricity market and assesses the location of 
various market participants. According to the research, the 
participation of the power industry in the carbon trading 
system leads to the rise of electricity prices, which in 
turn leads to a heavy impact on private consumers and 
the metal industry. In contrast, developing nuclear power 
will limit electricity price growth to a certain extent[8]. 
In addition to discussing the cost changes of enterprises 
under the constraint of carbon quota, scholars also adopt 
modeling and Numerical analysis methods to study the 
changes in firms’ production decisions under carbon 
trading. 
Furthermore, Zhang and Xu(2013) used the profit 
maximization model to analyze the optimal output and 
carbon trading decision and discuss the impact of the 
carbon price and total carbon quotas on production 
capacity, decision, and total profit when the carbon quotas 
trading was small, with multiple project production plans 
and independent and random demand of each project[11]. 

3 Methodology
In reality, firms obtain carbon quotas in three ways, initial 
allocation from the government, carbon market trading, 
and purifying. By using carbon quotas, firms must meet 
the limitation of carbon emissions by regulations in both 
short-term and long-term management. In the short term, 
we build a cost-optimal model with the help of carbon 
quota price prediction conducted by the LSTM method. 
We discuss firms’ optimal production strategy under 
variable purifying levels in the long-term cost-optimal 
model.
Before establishing our cost-optimal models, a few 
assumptions are made as follows.
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3.1 Preparation for the models
3.1.1 Assumption and Justifications

(1) Free trading of emission rights 
Considering that many industries and enterprises 
participate in carbon emission trading in the current 
market, and afforest organizations have a large supply 
capacity of emission permits, this paper assumes that the 
emission permits market is sufficient for individuals in the 
carbon emission trading market within a certain range. 
(2) High-emission industries with monopolistic or 
oligopolistic nature 
Currently, mainly seven industries with a monopoly or 
oligopoly nature are allowed to enter the carbon trading 
market -electricity, building materials, cement, steel, 
petrochemical, paper production, and civil aviation. 
Therefore, this study assumes selling price in the product 
market is determined by the output. 
(3) Constant unit output
Technological improvement in production is not 
considered in this paper because of its relatively 

standardized industrialization process in these industries. 
(4) Short-term and long-term strategy 
After conducting many market investigations, we found 
that some firms cannot achieve clean technology updates 
to reduce emissions per output unit before the current 
year’s carbon quota cost performance deadline. However, 
firms can finally achieve clean technology updates in the 
long term through continuous technology iteration and 
capital investment. Therefore, this study will discuss both 
the short-term and long-term situations.
(5) Purification cost assumption 
In the long run, this study believes that firms have 
sufficient time to purify their production technology and 
obtain emission-right savings. 
(6) Purification technology assumptions 
This study assumes that the update of purification 
technology only reduces the emissions per unit of product 
but does not increase the output and reduce the emissions 
simultaneously, which is consistent with most situations. 
3.1.2 Notations

The notations used in this paper are listed.

Symbols Definition
Eg Initial allocation of carbon quota by government

Em The amount of carbon quota purchased or sold in the carbon market by firms
Ep Carbon emissions reduced by purification

p* Carbon quota trading price which the LSTM model can predict

β Carbon emission per unit of product produced by firms

E q( ) Actual carbon emission output E q eq( ) =

P q( ) Product price P q uq( ) = −ω

α Purification level

C0 Marginal production cost of products

t The carbon tax rate of an industry

C( )α Cost of purification

3.2 Prediction of carbon quota price based on the 
LSTM Network Method
Deep learning methods such as long-short-term memory 
neural networks (LSTM) can better handle highly 
correlated financial time series problems and achieve 
higher accuracy when dealing with nonlinear trends 
and sequence-related data issues. Therefore, this paper 
uses LSTM neural networks to acquire the time series 
characteristics of historical trading data of carbon quotas 
and establish an LSTM neural network prediction model.
Before experimenting, we performed data per process and 
checked abnormal and missing values. For the missing 
values in non-trading days, we removed the data for 
continuous forecasting of national carbon quotas.
Later, we performed abnormal value detection on the data. 

As the data in this experiment was taken from publicly 
available trading data[12] rather than real-time data, we 
assumed there were no abnormal values. Furthermore, we 
normalized the data by creating a MinMaxScaler object 
and converted all numerical variables to values from 0 to 1.

xi
′ =

max( ) min( )x x
x xi

−
−

In this paper, MAE and RMSE, as well as the Learning 
time and Convergence speed of the model, are selected as 
evaluation indicators for the performance of the LSTM 
neural network prediction model. 

MAE y y= −
1
n∑ i

n
=1 i i


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RMSE y y= −
1
n∑ i

n
=1( i i

 )
n is the size of the data set, Yi is the actual price of the 
carbon quota, andYi represents the model’s predicted 
value.
This paper mainly tunes three model parameters: the 
number of hidden layers, learning rate, and maximum 
training iterations. The range of the number of hidden 
units in the LSTM neural network can be calculated based 
on empirical formulas.

n m n a= + +

Parameter q represents the number of hidden layers, m 
represents the number of input layers, n represents the 
number of output layers, and a is a constant between 1 and 10. 
In the experiment, m is set to 20, n is set to 1, and the 
value ranges from 1 to 10. According to the formula, 
the range of the number of hidden layers is calculated to 
be between 5 and 15. To determine the specific number 

of hidden layers, the q values are set to integer values 
between 5 and 15 while keeping m and n constant for 
simulation and verification. 
After multiple experiments, it is observed that the error 
rate of the LSTM neural network decreases continuously 
from 5 hidden layers. The MAE and RMSE values reach 
their minimum when the number of hidden layers is 12, 
and the error rates increase continuously when the number 
of hidden layers is between 12 and 14. Therefore, the 
optimal number of hidden layers for the LSTM neural 
network is 12, where the MAE and RMSE values are the 
lowest, and the prediction results are more accurate.
Learning rate parameters: When the learning rate is 
0.01, the results shown in the figure shows that the loss 
function frequently fluctuates with the increase of the 
number of training times, which means that the model 
parameters skip the optimal value in each update, resulting 
in the instability of the training process and even failure to 
converge. After reducing it to 0.01, the right figure shows 
the effect.

Figure 1: The loss function when the learning rate parameter is set at 0.01 and its effect. 
Data source: Publicly available trading data from the 
Shanghai Environment and energy exchange(SEEE)
Batch size parameter: Batch size refers to the number 
of samples used in each training. Using batch training can 
significantly accelerate the training process and improve 
the model’s generalization ability. A large batch size can 

speed up the training speed of the model, but at the same 
time, it may lead to an increased risk of model overfitting. 
However, although a small batch size can reduce the 
risk of model overfitting, it may lead to low efficiency of 
model training. 

 

Figure 2: The function loss of batch sizes from 2 to 16.
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Data source: Publicly available trading data from the 
Shanghai Environment and energy exchange(SEEE)
Step parameter: The time step refers to the point at 
which each sequence element is input into the model, 
and the number of time steps determines the length of 
the input sequence that the model can take into account. 
The selection of time steps needs to consider the model’s 
computational and storage complexity. The three groups 
with time steps equal to 20 were compared.
When time steps equal 25, there is a large oscillation from 

3 to 5 epochs, which may be affected by the randomness 
of the model. Regarding the carbon quota price change 
trend, we use the data of the first 20 trading days to 
predict the closing price data of the 21st day. This is 
because the data of more than 20 days has little influence 
on the data of the 21st day, and the accuracy of prediction 
may be affected by factors such as seasonality and trend. 
Therefore, we choose time steps equal to 20 as the time 
step parameter of this model.

Figure 3: The function loss of time steps. 
Data source: Publicly available trading data from the 
Shanghai Environment and energy exchange(SEEE)

3.3 Short-term Cost Optimization Model
In the short term, we believe firms cannot upgrade a 
cleaner technology in the short term due to the time 
limitation. Therefore, this model aims to discuss the 
impact of emission permits on the output decision of 
production enterprises in the short term, and only the 
emission-related costs and production costs need to be 
considered. In contrast, other costs can be ignored, not 
affecting the analysis results. The firm’s profit function is

π = − − − −[P q c q p E q E tE q( ) ( ) ( )0 ] µ   g

s.t.  E E E qg + ≤m ( )

[P q c q( ) − 0 ]  is the product profit which equals net 
revenue per unit of product multiple by the quantity sold. 
P E q E*   ( ) − g  is the cost or benefit of purchasing or 

selling carbon quota. tεc is the carbon tax payable by a 
certain firm under the condition of the carbon tax rate of a 
certain industry.
Because firms have profit maximization goals, the 
restriction will become

s.t.  E E E qg m+ = ( )

When E q E( ) = g, the initial emissions allocated by the 
government are greater than the emissions. Firms are 
faced with deciding whether to sell the remaining carbon 

quota for profit or completely use the carbon quota to 
continue production. To solve this problem, we need 
to analyze continuing production’s marginal cost and 
marginal benefit.
Suppose the profit obtained by selling the carbon quota is 
greater than that obtained by completely using the carbon 
quota to continue production. In that case, the firm will 
choose to sell the remaining carbon quota. Therefore, the 
profit function of the enterprise will become the following 
form:

π = − + − −[ p q c q p E q E tE q( ) * ( ) ( )0 ]   g

s.t.  β p p q c* > −( ) 0

Suppose the profit from selling the carbon quota is less 
than the profit from continuing production by completely 
using the carbon quota. In that case, the firm will choose 
to continue production by completely using the carbon 
quota.

π = − −[P q c q tE q( ) ( )0 ]

s.t.  β p P q c* < −( ) 0

When E q E( ) < g, the initial emissions allocated are 
less than the natural emissions of the enterprise, the 
firm decides to minimize the loss cost, which turns into 
whether to purchase a carbon quota for cost fulfillment or 
reduce emissions by reducing production.
Suppose the carbon quota price predicted is higher than 
the profit lost when reducing production. In that case, 
the enterprise will choose to reduce production to reduce 
emissions and finally realize the cost performance, and its 
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profit function becomes the following form:

π = − −[P q c q tE q( ) ( )0 ]
Suppose the carbon quota price is lower than the profit 
lost when reducing production. In that case, the enterprise 
will purchase a carbon quota to fulfill the contract rather 
than giving up the output already produced or continuing 
production. In this case, the profit function becomes the 
following form:

π ε= − − − −[P q c q p E q E t( ) ( )0 g c] 4   

3.4 Long-term Cost Optimization model(LCO 
model)
In the long term, we consider the carbon quota of 
producers mainly comes from three channels: initial 
government allocation, carbon quota savings obtained 
from purification, and purchase from the carbon trading 
market. We will discuss situations of constant purification 
levels and alterable purification levels.
3.4.1 Constant purification level 

When the producer’s emission purification level α is 
constant, we will need to find the specific correlation 
between profit(π) and Ep to determine the optimal output 
and emission reduction. 

c( )
α
α

 is the purification cost per unit. When 
c( )
α
α

< p*, 

the purification cost per unit is less than the carbon quota 

price, it can be concluded that ∂
∂
E
π

p
> 0 and the cost of 

reducing carbon emissions through purification is lower 
than that of purchasing carbon quota from the market 
when the cost is fulfilled. Therefore, The optimal strategy 
of the producer is to preferentially purify all emissions, 
purchase the insufficient part from the trading market and 
put the surplus part into the trading market to earn the 
difference.  

π α α= − − − − + −[a bq c q eq p tE0 ] 
( *(1 ) C( ) (q)

s.t.  
∆
∂x

q
=0

s.t.  P q a bq( ) = −  

The optimal production will be 

q* =
a e p c− − +

( *(1 ) ( )

2b

α α 

Under optimal production, the maximizing profit should 
be

E eqp =
*

Eg =αeq*

E E q Em g= − −(1 )α ( * )

π α α* * *= − − −q a ep (1 ) eC( ) )]− +α (q p E* *)2
g

When 
c( )
α
α

= p*, the purification cost per unit is equal to 

the price of the carbon quota purchased per unit; under 
this condition, the cost of purification is equivalent to the 
purchase carbon quota in the market. Any value has no 
impact on the profits of firms. 
If the firm decides to purchase carbon quota in the market 
instead of purification, the function of profit will be

π = − − − − −[a bq c q p eq E teq0 ] µ µ( g )
s.t. E E E eq*m p g+ + =α

The optimal production will be 

∂
∂
π
q
= − − − =a 2 e te 0bq p*

 q* =
θ (t p a− −

2b

− )  

When 
c( )
α
α

< p*, the purification cost per unit is less 

than the price of carbon quota purchased per unit in the 
market. In this case, the profit π of the enterprise is a 
monotonically decreasing function. Therefore, when the 
enterprise takes profit maximization as the premise, it will 
not choose purification but simply buy carbon quota from 
the market.

Ep = 0

In this case, the producer’s revenue is still 

π = − − − − −[a bq c q p eq E teq0 ] * *( g )
s.t. E E E eq*m p g+ + =α

The optimal production will be 

∂
∂
π
q
= − − − =a 2 e te 0bq p*

 q* =
θ (t p a− −

2b

− )

3.4.2 Alterable purification level 

In the case of variable purification level, it becomes a 
decision variable in the interval of 0 to 1, and in this case, 
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the construction function is 

f p C( ) ( )α α α= −*

The economic significance of this time is the set of 
purification levels in which the carbon emissions of 
enterprises in production purification treatment is better 
than the carbon quota traded in the market, which is called 
the “purification area.” 
When the purification area is empty, and there are no 
satisfactory results in the feasible space, the enterprise 
will not carry out purification during production, and the 
income obtained from production is irrelevant.
When the purification region is not an empty set, the 
enterprise must find the optimal coefficient solution in the 
purification space. 
The existence of the purification space needs to meet the 
following proof.
Proposition 1: The necessary and sufficient condition for 
the existence of purified space is 

∂C(0)
∂α

< P*

Proposition 2: If there is a purified space, the function 
f ( )α  has a maximum value, and the corresponding a*must 
be in the purified space. 
Let’s assume 

C( )α =
1
α
−
C
α
0

Then,

α * = −1 /C C0 m

The optimal production q′ will be 

q* =
a eC e C C+ −0 0 m

2
2 /
b

And under optimal production, the maximizing profit 
should be

Ep =
ea e C e C C+ −2 2

0 0 m 

2
2 /
b

E eqs =α *

π =
(a 2 /+ −θ θC C C0 0

4b
m )2

 + 
C Em g

4 Results
Through the establishment of the LSTM model, this study 
predicts the predicted the carbon quota prices in the next 
ten days as follows: 

[56.592484][56.58412][56.6348][56.688324
[56.738155][56.784977][56.829556]

]

[56.873077][56.916122][56.95909]

The loss function value of the final training is 

RMSE 0.02337
RAE 0.01482=

=

After comparing the predicted values with the actual 
values, we have drawn the following chart to visualize the 
model-predicted values with the actual values. 

Figure 4: Fitted plots of predicted and actual 
values

From the comparison curve between the predicted value 
and the actual value of the model, we can see that the 
prediction accuracy of the model is high within 50 days, 
and the average male of the error between the predicted 
value and the actual value is 0.34983, which is 0.64208% 
of the average opening price. From the model’s accuracy, 
we can conclude that the model’s prediction is reasonable. 
At the same time, we obtained the results using the Arima 
model and the LSTM prediction model. We calculated the 
average error of the prediction results using the data in the 
last ten days of the table as the benchmark. The average 
error of the Arima model is 0.7343, and the average error 
of the LSTM model is 0.2953.

5 Discussion
The gradual implementation of China’s policy establishes 
a unified national carbon emission trading market. The 
outcome of this research has provided new insight into the 
relationship between firms and the carbon trading market. 
Most of the existing studies do not consider the short-term 
and long-term problems firms face in actual production. In 
the short term, usually less than six months, firms cannot 
upgrade their production equipment to a less emission 
one, and their product strategy is highly correlated with 
carbon quota price in SEEE. Therefore, when reaching the 
carbon quota fulfillment deadline set by the government, 
firms can only choose to purchase carbon quotas in the 
carbon trading market. This situation often occurs in 
the early stage of the carbon trading market. In the long 
term, firms can update their technique to less carbon-
emitting production technology. Therefore, a long-term 
optimal production model is established, and constant and 
alterable purifying levels are discussed. 
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Furthermore, this empirical paper is not only limited 
to theoretical discussion but also uses the long-short-
term memory neural networks(LSTM) model to predict 
the carbon quota price, which firms can use directly to 
develop the best production strategy.
However, the results should be interpreted with caution 
due to the limitation of current research.
The chapter ends with several recommendations for 
further research. Firstly, it is highly important to consider 
different cooperative emission reduction mechanism 
designs among supply chain firms. Each node in the 
supply chain can cooperate to reduce emissions through 
coordination mechanisms such as cost sharing and 
buyback, which is also one of the important future 
research directions. In the long term, suppliers and 
distributors can also cooperate to reduce emissions, 
including those led by manufacturers and those led by 
distributors. Also, other situations firms may come across 
are also not considered. They are multi-period problems 
allowing intertemporal use of emission permits, emission 
permit trading contract problems with stochastic product 
demand, and nonlinear emission factors considering 
economies of scale.

6 Conclusions
This paper mainly studies the impact of China’s emission 
permit trading scheme on the production strategy of 
emission-dependent firms. In this paper, we consider the 
case of single cycle and single emission, and it is assumed 
that the producers will face both short-term and long-
term compliance. In the short term, firms cannot upgrade 
their production equipment to a less emission one, and 
their product strategy is highly correlated with carbon 
quota price in SEEE. An LSTM carbon price predicting 
model is developed to help firms make the best trading 
strategy during this period. In the long term, firms can 
obtain emission permits through three channels: initial 
government allocation, market trading, and purification 
treatment. The best strategy should both strike a balance 
among the three channels and maximize profits. 
The research has a certain enlightenment for confused 
enterprises in the launch stage of carbon trading. It 
clarifies the impact of carbon emission intensity on 
the production strategy and external relations of firms, 
helping them to understand and actively participate in 
carbon trading and flexibly respond to the impact caused 
by carbon quota constraints. On the other hand, this paper 
analyzes the reaction of enterprises to the carbon quota 
constraint. It provides a reference for the design of the 
carbon emission permit system at the national policy 
level.
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Appendix
Import code

import numpy as np
import pandas as pd
import tensorflow as tf
from keras. models import Sequential
from keras.layers import Dense, LSTM
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from tensorflow.keras import backend as K
from keras.optimizers import Adam

Data standardization 

data=pd.read_excel('new_index.xlsx')
df=pd.DataFrame(data,columns=['Date','Open'])
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(df['Open'].values.reshape(-1, 1))

Divide the test set and training set

time_steps = 20
train_size = int(len(scaled_data) * 0.8)
test_size = len(scaled_data) - train_size
train_data = scaled_data[:train_size, :]
test_data = scaled_data[train_size:, :]

Time series data definition

def generate_time_series(data, time_steps):
X = [ ]
y = [ ]
for i in range(len(data) - time_steps):
X.append(data[i:i+time_steps])
y.append(data[i+time_steps])
return np.array(X), np.array(y)
def rmse(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_pred - y_true)))
learning_rate = 0.01
adam = Adam(lr=learning_rate)
X_train, y_train = generate_time_series(train_data, time_steps)
X_test, y_test = generate_time_series(test_data, time_steps)

LSTM model training

model = Sequential()
model.add(LSTM(11, input_shape=(time_steps, 1)))
model.add(Dense(1))
model.compile(optimizer=adam, loss=[ rmse , 'mean_absolute_error'])
history = model.fit(X_train, y_train, epochs=100,batch_size=16,validation_data=(X_test, y_test), shuffle=False)

Model fitting effect test

predictions = [ ]
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for i in range(len(X_test)):
    X_input = X_test[i].reshape((1, time_steps, 1))
    y_pred = model.predict(X_input, verbose=0)
    predictions.append(y_pred[0])
rmse = np.sqrt(np.mean((predictions - y_test)**2))
print('Root Mean Squared Error:', rmse)
mae = np.mean(np.abs(predictions - y_test))
print('Mean Absolute Error:', mae)

Model adjustment

predictions = scaler.inverse_transform(np.array(predictions).reshape(-1, 1))
y_test= scaler.inverse_transform(np.array(y_test).reshape(-1, 1))
last_20_days = scaled_data[-time_steps:]
X_input = last_20_days.reshape((1, time_steps, 1))
predicted_data = []
for i in range(10):
    y_pred = model.predict(X_input, verbose=0)
    predicted_data.append(y_pred[0])
X_input = np.append(X_input[:, 1:, :], y_pred.reshape((1, 1, 1)), axis=1)
predicted_data = scaler.inverse_transform(np.array(predicted_data).reshape(-1, 1))
print('Predicted open prices for the next 10 days:')
print(predicted_data)
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