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Abstract
In many research fields, high-dimensional data poses significant difficulties for experimental algorithms and simulations. 
The pro-post of Principal Component Analysis (PCA) provides an important preprocessing idea for the study of large 
sample experiments. PCA achieves information refinement by constructing an uncorrelated variable. Based on basic and 
generalized ideas of PCA, we illustrate the feasibility and flexibility of its application in a wide range of involved fields. 
It demonstrates that PCA is a worthy method not only in different fields but also in specific applications as a classical 
theory that can be further investigated in depth according to the characteristics of the data.
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1 Introduction
Principal component analysis (PCA) is the most common 
way to reduce the data dimension. The main idea of PCA 
is to reduce the dimension of data and simultaneously 
minimize the loss of information. The work of principal 
component analysis is to find a set of mutually orthogonal 
coordinate axes sequentially from the original space, and 
the choice of new coordinate axes is closely related to the 
data. The first new axis is chosen in the direction in which 
initial data has the largest variance, then the second new 
axis, which is orthogonal to the first axis and has the larg-
est variance. We can get the K axis to include most of the 
variance to reduce the dimension of data.
PCA was proposed by Karl Pearson in 1901 and used to 
reduce the dimension of data and help understand and 
analyze the data. In the 1980s, with the development of 
computer technology, PCA was popularized and applied 
in image processing [6], and its advantages in data reduc-
tion and feature extraction began to appear. Up to now, 
PCA has played an important role in many areas.
In Section 2, we review the basic concept of PCA. Section 
3 concludes the valuable research of PCA in finance and 
face recognition areas. Finally, the conclusion is presented 
in Section 4.
In this paper, we denote XT by the transport of vector X. 
Using Ep (ξ) to express the mean value (expected value) 
for random variable ξ. Rp denotes the set of all p-dimen-
sional real-valued vectors.

2 Theory chapters
2.1 Correlation of statistical concepts
Random variable and random vector
A random variable is a variable whose value is randomly 
selected; for example, when through the coin, suppose 
that the probabilities of each result are equal, we can use 
random variable ξ to quantization results:
	 ξ(′′ face upward′′ ) := 1, ξ(′′ face downward′′ ) := 2.� (1)
Denote ωi; i = 1, . . . , 6, show simple random sampling, 
the results of a
random event, these sample constitute sample space Ω = 
{ωi }i

6

=1
	 ξ : Ω → {1, . . . , 6}, ξ(ωi ) = i,i = 1, . . . , 6.� (2)
The distribution of random variables is:

	 Pωi := 1
6

 , i = 1, . . . , 6.� (3)

A random vector is a vector whose components are all 
random variables. A random vector can express the results 
of throwing the coin. Suppose we throw the coin n times, 
the quantization of each result is random Xj, j = 1,...,n, we 
can use an-dimensions vector X = (X1,..., Xn )T, a random 
variable is a special random vector.
The characteristics of the sample and overall (discrete 
type)
For the random vector X, suppose that the support of X is 
Rx:= {a1, a2, . . . }, the distribution of corresponding Rx 
is:
	 P = {p1 , p2 , . . . }.� (4)
For any aj, j=1,2,..., the probability of the value is denoted 
as pj ≥ 0, and the basic condition is Σjpj = 1.
Mean is the weighted average of random variable values 
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under corresponding probabilities; the computing method 
is:

	 EP (X):= ∑
j

pj aj.� (5)

The mean value is a basic and important characteristic of 
a random variable that shows the average standard. The 
probability of a value is the weight.
Denote VarP by the variance operator. Variance is a 
non-negative value used to measure the disorder level of 
random variables; the computing method is:

VarP (X) := E[(X − Ep (X)2 )] = ∑
j

pj (aj − EP (X))2 . (6)

The square root of variance var (X) is called standard de-
viation.
When we have a sample {X1, . . . , XN }, we can use the 
method below to calculate the mean and variance:

	 μ x X= = −
 N
1 1∑ ∑

k i

N N

= =1 1
i , σ µj ij j

2

N ( )2
� (7)

Where µj is the jth component of µ, the equivalent proba-
bility 1/N of each sample point is assumed.

2.2 The definition of principal component
Let
	 Y := (Y1 ,...,Yp )T ∈ Rp
be a realization of some random data. There are two steps 
to reduce the dimension of the P random variables.
1. Find the principal component

Let α1 = (α11,...,α 1p) ∈ Rp be a vector of constants. 
Find the maximum
variance of α1

T Y, which is the linear transformation of ele-
ment Y

	 α1
T Y =  α 1iYi = α 11 Y1 + ··· + α1pYp ∈ R,� (8)

which is called the first principal component of Y.
2. Find the other principal components

Find α2
T Y, which is uncorrelated with α1

T

Y, and calculate 
the maximum
variance. This is the second principal component. Repeat 
these steps to find all
principal components αk

T Y, k = 1,...,k.
3. Maximization of variance

The variance maximization problem could be reformulat-
ed as follows:
	 α

m
∈ R

a x

p Var(αTY) = α
m
∈ R

a x

p αT Σα,� (9)
Where Σ is the covariance matrix of Y.
Then, use the Lagrange multiplier method to solve the 
equation. We can get the
value of V and λ. Take the derivative of the following for-

mula.
	 L(e,λ) = eT YY Te − λ(eTe − 1)� (10)
We can get:
	 ∂e = 2YY e − 2λe = 0, ∂λ = −ee + 1 = 0� (11)
Solve it can get:
	 YY T · ee = λe� (12)
In the above equations, e is called the eigenvector (corre-
sponds to λ) of Y, and also we can get:
	 YY T · e = λeeT YY T · e = λe = λ� (13)
So, we can prove that λ is also an eigenvalue of e.

3 Recently research
3.1 The application of PCA in finance
Since data in the financial area has a strong linear relation-
ship, PCA is widely applied in the financial area. It is al-
ways used to analyze financial market data and control the 
allocation of assets. In optimizing investment portfolios, 
using PCA can identify the relationship between different 
properties, helping investors build a risk-diversified port-
folio. In risk management, PCA can be used to identify the 
main risk factors in the financial market, helping financial 
institutions recognize the essential risks. PCA can analyze 
the price of a stock, using time series data such as interest 
rate and exchange rate to capture the trend and period of 
the market. In the following part, we will introduce the 
recent application of PCA in the fiance area in detail.
3.1.1 Predict stock price

1. Combine NeuroEvolution and PCA

In the stock market, determining the trading signal that 
can achieve the visitor’s aim is a very popular research 
direction. This is a complicated task. Recently, there has 
been some research using deep learning methods in the 
financial area to find suitable entry and exit points in the 
stock market. In 2018, Nadkarni and Neves [9] proposed 
an approach combining a NeuroEvolution of Augmenting 
Topologies (NEAT), with the technique PCA, which is 
used for reducing data dimension. This method considers 
the earnings, daily profits, investing risk, and investment 
time. They also test the performance of this algorithm. 
They used the different markets’ daily volume and prices 
(open, high, low, and adjusted close) from 27/03/2006 to 
13/04/2017 to train and test the implemented system (80% 
data used for training, 20% for testing). They measure the 
performance of NEAT and PCA by using four indicators, 
including returns obtained (ROR), risk-return ratio (RR), 
mean daily profits (MDP), and returns obtained by day in 
the market.
(ROR/day). Also considered is the time that the capital 
invested in the market (Market Days) and the maximum 
drawdown (MDD) of the returns. They select eight repre-
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sentative stocks from the eight highest market capitaliza-
tion sectors of the S&P 500 index for testing. The results 
showed that the implemented system is robust as it per-
forms better in Buying and Holding in most tested stocks.
2. Combine PCA, Discrete Wavelet Transform, and 
XGBoost

Researchers continue to find more models that can be 
used to determine the trading point in financial markets. In 
2019, Nobre and Neves [10] proposed a new model that 
combines Principal Component Analysis (PCA), Discrete 
Wavelet Transform (DWT), Extreme Gradient Boosting 
(XGBoost), and Multi-Objective Optimization Genetic Al-
gorithm (MOO-GA). They used PCA to reduce the dimen-
sion of the input financial dataset and DWT to reduce the 
noise of each feature. The processed dataset was then fed 
into the XGBoost binary classifier, the hyperparameters 
optimized by MOO-GA. They analyze the effectiveness 
of PCA, where the reduction of data dimension can better 
identify patterns in the processed data, resulting in a better 
generalization ability and higher accuracy of the XGBoost 
binary classifier. The results show that PCA improves the 
system’s performance, especially at high oscillating peri-
ods.
3. Scaled PCA

In 2022, Huang et al. [2] proposed Scaled PCA. This 
method scales each predictor according to its ability to 
predict the target before prediction. Generally, Scaled 
PCA has two steps. First, a target prediction regression for 
each predictor’s lagged value is performed to assess its 
predictive power. Factors were then extracted from these 
scaled predictors using the PCA method: underweight 
variables with weak predictive power and overweight 
variables with strong predictive power. The experiments 
show that scaled PCA outperforms compared with PCA 
because PCA treats all standardized predictors equally 
and completely ignores the target information; when one 
predictor is noisier than the others, it inevitably affects 
the factor weights disproportionately, but Scaled PCA 
takes into account the target in the downscaling process. 
In their article, they mentioned the application of Scaled 
PCA to predict the stock market in terms of investor senti-
ment. Also, an application to predict inflation with a large 
panel of macro variables. While the PCA does not show 
significant pre-predictive power, the Scaled PCA shows 

significant predictive power within and outside the 1- to 
12-month forecast range.
3.1.2 Analysis of the structure of financial markets

In 2011, Fenn et al. [1] used random matrix theory and 
PCA to analyze the relationship in the financial market. 
They use random matrix theory to demonstrate that the 
correlation matrices of asset price changes contain a struc-
ture incompatible with uncorrelated random price change. 
Then they use
PCA to testify that a fraction of components could inter-
pret a large fraction of the market variability. They study 
the relevance between the asset price time series and 
principal components to characterize the time-evolving 
relationships between the different assets. They also found 
that the relationship between different markets increased 
after the 2007-2008 liquidity and credit crisis.
In 2014, Lin, Shang, and Zhou [7] also used PCA in their 
research on financial market structure. They measure 
the multiscale behavior and interactions between stock 
markets by using multifractal detrended cross-correla-
tion analysis (MF-DXA: combine MF-DFA and DCCA). 
They get many conclusions. The market within one 
geographic region has a higher level of correlation. Two 
financial crises (the global financial crisis and the Asian 
financial crisis) led to an increase in stock market correla-
tions. Market correlation was stronger during the global 
financial crisis than during the Asian financial crisis. In 
general, the cross-correlation increased during the crisis. 
In normal times, the US stock market plays an important 
role. In times of crisis, the US stock market also retains an 
important role. Meanwhile, the influence of China’s stock 
market is rising.
3.1.3 Summary

There is a large amount of data in the financial area, and 
a large part belongs to time series data. PCA has many 
advantages for reducing the dimension of such data. The 
accuracy of predicting the price trend of financial products 
will be improved, and financial markets can be analyzed 
more quickly and clearly. In conclusion, the application 
of PCA greatly helps researchers in the financial area, and 
many researchers in the financial industry are using PCA 
to reduce the dimension of data to help them work (Table 
1).

Table 1: Related research of PCA in the financial area
Year Author Application Areas View
2009 Hubert M et al. [3] Analysis of financial data Robust PCA proposed
2018 Nadkarni J et al. [9] Trade in financial markets NeuoEvolution and PCA
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2019 Nobre J et al. [10] Trade in financial markets PCA in discrete wavelet transform
2021 Zheng L et al. [15] Predict share price PCA hybrid prediction model
2022 Huang D et al. [2] Forecast market return Scaled PCA proposed

3.2 The application of PCA in face recogni-
tion
Nowadays, there are a lot of scenarios where we use face 
recognition. Face recognition always includes these key 
procedures: (1) image acquisition using camera- capture 
equipment. (2) face detection: using a classifier to locate 
the face part of the image. (3) face preprocessing: adjust 
the detected face image (including size, angle, color, etc.) 
(4) feature extraction: face image contains a large number 
of pixels (features), using dimension reduction algorithm 
to extract important features (5) face mating and recogni-
tion: compared
Extracted features with the features in the database to 
complete face recognition. (6) output results. The (4) is a 
key procedure of face recognition, PCA, and some related 
algorithms always used to extract important features in a 
large number of features, reduce the computational load in 
the recognition process, and improve the recognition per-
formance.
PCA still has great potential for improvement due to its 
recognition speed, accuracy, and cost. So, based on PCA, 
the researchers optimized from different angles and then 
proposed kernel PCA [11], 2DPCA [13], and other algo-
rithms. The following sections will introduce some of the 
most influential PCA optimization algorithms and their 
application.
3.2.1 Theory

1. Kernel PCA

PCA is suitable for processing linear data, but it is not ef-
fective for nonlinear data. So, in 1998, Scholkop et al. [11] 
proposed kernel PCA, a algorithm that processes nonlin-
ear data.
2. 2D PCA

Since PCA could not capture the simplest invariance, 
some scientists proposed independent component analysis 
(ICA) and used kernel PCA to extract face features. These 
two methods outperformed the classical eigenfaces meth-
od. However, when doing computation, both kernel PCA 
and ICA are more expensive than PCA. So, in 2004, Yang 
et al. [13] put forward 2DPCA. Compared with PCA, 
2DPCA directly uses 2D image matrices and does not 
translate them into a 1D vector, which better preserves the 
original data and reduces the amount of computation (the 
size of the image covariance matrix using 2DPCA is much 

smaller).
However, 2DPCA has a key shortage: it needs more co-
efficients to represent images than PCA. Researchers all 
used PCA after 2DPCA to solve this problem. In 2005, 
Zhang et al. [14] proposed an algorithm (2D)2 PCA to 
solve this problem. The main difference between 2DPCA 
and (2D)2 PCA is that 2DPCA works only in the row 
direction of the face images, while (2D)2 PCA works in 
both row and column directions. Since (2D)2 PCA ana-
lyzes both row and column directions, the algorithm is 
particularly suitable for analyzing images with important 
information in both row and column directions.
3. Sparse PCA

It is difficult to interpret the results because all compo-
nents after using PCA are linear combinations of the 
original variables. Subsequently, in 2006, Zou et al. [18] 
proposed a new method, sparse PCA. They used elastic 
nets (lasso), a promising variable selection technique, to 
generate modified principal components with sparse load-
ings. SPCA is based on the fact that PCA can be written as 
a regression-type optimization problem with a quadratic 
penalty; the lasso penalty (via the elastic net) is directly 
integrated into the regression criterion to obtain an im-
proved PCA under sparse loadings.
4. Robust PCA

Since PCA is very sensitive to outliers, it has facilitated 
the development of robust techniques. Researchers de-
veloped an improved robust PCA method applicable to 
skewed data. In 2009, Hubert et al. [3] proposed robust 
PCA. ROBPCA combines projection pursuit (PP) and 
robust covariance estimation, which is well suited for 
analyzing high-dimensional data and has been applied to 
multivariate calibration and classification.
3.2.2 Application

1. Kernel PCA

Using kernel PCA, we can map the low-dimensional data 
to a high-dimensional space, showing the nonlinear rela-
tionships in the original data. Kernel PCA has high flex-
ibility. We can choose different kernel functions to meet 
different data and needs when using kernel PCA. Scholkop 
et al. [11] experimentally examined the performance of 
nonlinear PCA. Experiments on character recognition. 
They used kernel PCA to extract nonlinear principal 
components from a database of handwritten characters. 
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The results show that the nonlinear principal components 
have higher recognition accuracy than the corresponding 
number of linear principal components. The performance 
of the nonlinear components is improved more than that 
of the linear components by using more components. In 
conclusion, kernel PCA only requires solving an eigen-
value problem without nonlinear optimization compared 
to other feature extraction techniques. Therefore, kernel 
PCA can be applied to all areas where traditional PCA and 
nonlinear extensions make sense.
2. 2D PCA

Yang et al. [13] used three well-known face image data-
bases (ORL, AR, Yale) experimentally to test face rec-
ognition performance using 2DPCA. They used the ORL 
database to evaluate the performance of 2DPCA under 
conditions carrying different poses and sample sizes. The 
AR database was used to test the system’s performance 
under different facial expressions, illumination conditions, 
and occlusions. The Yale database was used to test the 
system’s performance regarding facial expression and il-
lumination changes. In the experiments based on the ORL 
database, they compared 2DPCA with Fisherfaces, ICA, 
and kernel eigenfaces, and the results show that 2DPCA 
performs better in almost all conditions. In experiments 
based on the AR database, the results show that 2DPCA 
has higher recognition accuracy and faster feature ex-
traction speed than PCA under light variation conditions. 
The experiments based on the Yale database show that 
2DPCA outperforms PCA, ICA, and kernel eigenfaces in 
terms of recognition rate. The results of all tests (based 
on ORL, AR, and Yale databases) show that 2DPCA has 
more advantages than PCA: it extracts image features 
directly, and 2DPCA has higher accuracy and faster com-
putation speed. Since 2DPCA can directly process two- 
dimensional data, retain more information, and have fast 
computation speed, high accuracy,
At low cost, the algorithm is particularly suitable for pro-
cessing and analyzing two-dimensional data such as imag-
es.
After Zhang et al. [14] proposed (2D)2 PCA in 2005, they 
conducted evaluation experiments on PCA, 2DPCA, alter-
native 2DPCA, and (2D)2 PCA based on two well-known 
face databases, ORL and FERET. Experiments based on 
the ORL database show that (2D)2 PCA is more accu-
rate than PCA, and (2D)2 PCA has the shortest runtime. 
Experiments based on the FERET database compare the 
ability of PCA, 2DPCA, and (2D)2 PCA to represent face 
images at similar compression ratios. The results show 
that (2D)2 PCA generates higher-quality images than the 
other two methods with the same storage capacity.
3. Sparse PCA

In the article by Zou in 2006 [18], they introduce the 
methodological details of SPCA. An effective SPCA mod-
el fitting algorithm is proposed to derive suitable expres-
sions for correcting the variance explained by the princi-
pal components. They also considered special cases of the 
SPCA algorithms that effectively handle gene expression 
arrays. They illustrate the proposed method with real data 
and simulation examples. The traditional lasso has some 
limitations [17], so they proposed the elastic net. The elas-
tic net penalty is a convex combination of the ridge and 
lasso penalty. In this article, they compared SPCA with 
lasso constraints in PCA and SCoTLASS [4]. Compared 
to using lasso constraints in PCA, SCoTLASS successful-
ly derives sparse loading but is not computationally effi-
cient. When the spar- sity (lasso) penalty term disappears, 
accurate PCA results are obtained using SPCA. The sparse 
structure of the SPCA control makes the loading more 
flexible. SPCA has several advantages, including compu-
tational efficiency, high explained variance, and the ability 
to identify important variables.
4. Robust PCA

This algorithm consists of six steps. First, if the number 
of variables is much larger than the observation, use sin-
gular value decomposition to reduce the dimension for 
original data without losing information. Next, choose 
the coverage α between 1/2 and 1 (the default value is α = 
0.75). Set h = [αn] (denote [.] the integer part). The value 
of coverage α determines the robustness and effectiveness 
of this method. The robust is stronger and less accurate 
when α is smaller. Then, outliers will be calculated based 
on the definition proposed by Stahel (1981)and Dono ho 
and Gasko (1992). After that, all data will be projected 
onto the k-dimensional subspace spanned by the first K 
eigenvectors of the robust cover- ance estimator obtained 
in Step 3 to reduce the data dimension. Subsequently, the 
orthogonal distances to the subspace for each observation 
are calculated, and an improved robust subspace estimate 
is obtained based on these distances. Finally, the weighted 
minimum covariance determinant (MCD) calculates the 
robust center and covariance matrix in the k-dimension 
subspace. The eigenvectors of this robust covariance ma-
trix are the final principal components. In conclusion, ex-
periments applying ROBPCA to both real and simulated 
data
This shows that the method accurately estimates the PCA 
subspace and distinguishes between regular observations 
and outliers.
3.2.3 Summary

The development of face recognition technology is syn-
chronized with the improvement and optimization of PCA. 
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The most common improvement of PCA is improved the 
speed and accuracy of face recognition. In addition, there 
are also improved algorithms that reduce the required 

input data, reduce costs, and so on. In conclusion, PCA is 
widely used in the area of facial recognition. There are a 
lot of relevant studies (Table 2).

Table 2: Related research of PCA in the face recognition area
Year Author Application Areas View
1998 Scholkopfsch B et.al[11] Nonlinear feature extraction Nonlinear component analysis

1999 Tipping M et al. [12] Probabilistic dimension reduction Probabilistic principal component 
analysis

2002 Kim K et al. [5] Extract facial feature Apply kernel principal component 
analysis

2004 Yang J et al. [13] Image projection technique Two-dimensional PCA

2005 Daoqiang Zhang et al. [14] Face representation and 
recognition (2D)2PCA

2006 Zou H et al. [18] Data processing and 
dimensionality reduction Sparse PCA

2009 Hubert M et al. [3] Analysis high-dimensional data Robust PCA

2011 Mohammed A et al. [8] Human face recognition algorithm Bidirectional two-dimensional 
PCA

2018 Zhu Y et al. [16] Face feature representation Improved PCA

4 Conclusion
With the development of related computer technology and 
the continuous improvement of theories, the application 
of PCA has become more and more widespread in recent 
years, mainly focused on the areas that need to process 
large amounts of data. In the financial area, PCA is used 
to predict the price trend of financial products and analyze 
the structure of financial markets. The experiments show 
that in the investment, the return of portfolios that use 
PCA is significantly better than other portfolios. Using 
PCA helps researchers to quickly and analyze the financial 
market structure. The application of PCA in face recogni-
tion has improved the speed and accuracy of face recogni-
tion and reduced costs. At the same time, more improved 
algorithms (2D PCA/kernel PCA/Scaled PCA, etc.) have 
further improved face recognition techniques.
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