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Abstract:
With the rapid increase in the number of electric vehicles (EVs), vehicle-to-grid (V2G) technology plays a vital role 
in reducing the burden on the power system. This technology optimizes network load distribution through a two-way 
charging mechanism and effectively alleviates network load fluctuations. However, potential negative impacts on EV 
battery life should also be a cause for concern. Furthermore, the technology does not fundamentally change the charging 
behavior of electric vehicles. Against this background, this study proposes a multi-objective optimization strategy 
to adapt electricity price policy to network load fluctuations to control charging behavior. This strategy optimizes 
battery attenuation, charging costs, and network load fluctuations, aiming to alleviate network load fluctuations while 
completely solving user concerns about charging and battery maintenance costs. Simulation analysis has verified the 
effectiveness of this model in reducing grid load fluctuations and balancing user costs.
Keywords: V2G, Peak Shaving and Valley Filling, Multi-objective Optimization, Time-of-Use Pricing 
Strategy

1. Introduction
In a time of increasing environmental challenges, coun-
tries around the world need to address the pressing issue 
of reducing carbon emissions. Electric vehicles (EVs), 
with their remarkable emission reduction and environ-
mentally friendly features of using electricity instead of 
conventional fossil fuels, have become a solution to this 
problem. With the continuous rise in the number of EVs, 
challenges primarily include a significant increase in the 
total load on the electrical grid and potential impacts on 
the quality and stability of electrical energy[1]. Studies 
have shown that private EV users typically arrive at their 
workplaces between 08:00 and 09:00 in the morning and 
return home during the peak discharge hours of 17:30 to 
19:30 in the afternoon. This charging behavior overlaps 
with the two peak periods of residential electricity use—
06:00 to 09:00 in the morning and 17:00 to 21:00 in the 
evening—placing additional burdens on the grid during 
peak times[2]. This overlapping time presents unprece-
dented challenges to the operational stability and power 
supply quality of the power grid. There is an urgent need 
to develop effective strategies to deal with these challeng-
es.

Vehicle-to-grid (V2G) technology offers an innovative 
approach for electric vehicles to serve as adjustable en-
ergy loads and transform into distributed energy stations 
that can transmit power back to the grid. This technology 
provides a unique advantage by balancing the supply and 
demand of electricity, thereby enhancing the stability and 
reliability of the grid. In addition, V2G technology opens 
up an opportunity for electric vehicle owners to generate 
additional revenue by delivering power to the grid during 
peak electricity prices. However, despite the advantages 
mentioned, V2G technology has also raised some con-
cerns among owners. For many, V2G means their EVs 
will undergo more frequent charging and discharging cy-
cles. This could accelerate battery aging and thereby affect 
battery lifespan and overall performance[3]. As a result, 
many vehicle owners are concerned about the potential 
negative impacts on the batteries of EVs and are therefore 
hesitant to connect EVs to the grid during peak electricity 
consumption periods.
Therefore, this study takes a step further by integrating 
electricity price policy oversight and battery degradation 
cost considerations to test the substantial effectiveness of 
V2G technology in mitigating the conflict between power 
supply and demand, and reducing grid load peaks and 
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fluctuations. This study aims to demonstrate a charging 
and discharging strategy by adopting a multi-objective op-
timization algorithm to achieve a delicate balance between 
reducing the pressure on the power grid and alleviating 
the economic burden on users.

2. Construction of the Optimization 
Model
2.1 Charging and Discharging Model
To simulate whether electric vehicles are connected to the 
V2G network, this study categorizes the charging and dis-
charging power states of electric vehicles into the follow-
ing two scenarios:
	 0 , ,< < ∀ ∈ − ∀ ∈P P i N N t t ti t i i,

char V G d2 0( ) � (1)
	 P P P i N t t tdisc char V G d< <i t i i, ∀ ∈ ∀ ∈2 0, ,( ) � (2)
Herein, Pchar  denotes the charging power of the electric 
vehicle, Pdisc  represents the power released to the grid 
through V2G, and Pi t,  is the charging and discharging 
power of the electric vehicle i  at time t . Equation (1) 
indicates that, within the time interval from ti

0  to ti
d , ve-

hicle i  is not connected to the V2G network. This means 
that the charging performance of the vehicle is completely 
positive. It draws all power from the grid and ensures 
that the charging power does not exceed the maximum 
charging limit. On the other hand, equation (2) indicates 
that electric vehicles are connected to the V2G system 
within a certain time range. During this period, the energy 
exchange between the vehicle and the grid is unimpeded, 
and the amount of electricity exchanged must not ex-
ceed the specified maximum charge and discharge power 
threshold[4].
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Equations (3) and (4) establish the constraints for the elec-
tric vehicle’s battery level, guaranteeing that the battery 
level of any electric vehicle i  at departure is not lower 
than its minimum required level. Here, Ei

0  represents 
the initial state of charge, Ei

d  denotes the target state of 
charge, and η  stands for the charging efficiency. SOC 
(State of Charge) represents the percentage of an electric 
vehicle’s battery level[5]. In this study, the maximum and 
minimum values of SOC are determined to ensure that 
the battery level of electric vehicles stays within the pre-
defined range of values under all circumstances.

2.2 Based on a Real-Time Variable Electricity 
Pricing Model
Time-of-use pricing strategies serve as an effective de-
mand-side management tool by identifying peak and off-
peak periods in the power grid load curve and setting cor-
responding electricity prices for different time intervals. 
As illustrated in Figure 1, the power grid load curve shows 

significant fluctuations in electricity demand throughout 
the day[6]de-industrialisation and electrification of heat and 
transport. These changes are independent of renewable 
infeed and are not well understood: contemporary studies 
assume that electricity load curves will retain their current 
shape, scaling equally in all hours. Changes to this shape 
will profoundly affect the electricity industry: increasing 
the requirements for flexible and peaking capacity, and 
reducing asset utilisation and profitability.”,”container-ti-
tle”:”Energy”,”DOI”:”10.1016/j.energy.2015.06.082”,”I
SSN”:”03605442”,”journalAbbreviation”:”Energy”,”lan-
guage”:”en”,”page”:”1317-1333”,”source”:”DOI.org 
(Crossref. In the absence of effective scheduling strate-
gies, the random charging behavior of electric vehicles 
may further exacerbate the volatility of the total grid load, 
thereby imposing greater stress on the electrical grid sys-
tem.

Figure 1 Grid system load
Typically, based on the actual situation of user demand 
and the power grid load curve, electricity prices are cat-
egorized into three distinct time periods: peak, off-peak, 
and flat[7]. For example, Table 1 illustrates a traditional 
method of setting time-of-use electricity prices based on 
peak and off-peak values.

Table 1 peak and valley electricity prices
Off-Peak Flat Peak

Hour 3-6 1-2; 9-18; 23-24 7-8; 19-22
Price 0.3 0.9 1.5

While traditional time-of-use pricing can influence the 
charging behavior of electric vehicle users to some extent, 
it lacks the ability for real-time adjustments. Therefore, 
this study proposes a novel electricity pricing model that 
dynamically adjusts prices based on changes in real-time 
total power, as illustrated in equations (5) to (7)[8].
	 P P Pt t t= +base EV � (5)
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i

N

=1
, � (6)

	 C P aP b( t t) = + � (7)

In this model, Pt  represents the total power of the grid at 

time t , which is composed of the base power Pt
base  and 

the charging and discharging power of electric vehicles 
Pt

EV . As shown in Figure 2, compared to traditional tiered 
pricing models, pricing based on real-time power can 
more accurately reflect the real-time load situation of the 
grid, providing corresponding electricity prices. This ap-
proach effectively guides users’ charging behavior, allow-
ing for flexible adjustment of the grid load.

Figure 2 Time-of-Use pricing and power-
varying pricing

2.3 Basic Parameter Settings
Considering the typical distribution of battery capacities 
in the market, most electric vehicles have battery capac-

ities concentrated in the range of 40 to 75 kilowatt-hours 
(kWh). For example, the battery capacities of the Hyundai 
Kona Electric and Tesla Model 3 produced in 2019 are 
64 kWh and 60 kWh, respectively[9]. Therefore, in the 
simulation model of this study, 60 kWh is selected as the 
average battery capacity for simulation. In terms of the 
use and charging strategies of electric vehicles, to protect 
the battery life and maintain its performance, the  SOC 
of most electric vehicles is usually kept within a range of 
20% to 80%. This practice helps avoid the battery from 
being in a fully charged or excessively discharged state 
for an extended period, thus prolonging the battery’s 
lifespan. Moreover, many users tend to start charging 
when the battery’s SOC drops to about 20%, which is 
significant for designing effective charging strategies and 
grid management measures[10]. To realistically reflect the 
charging habits of electric vehicle users, this study sets the 
minimum SOC of the electric vehicle battery at 0.1 and 
the maximum SOC at 0.9 in the simulation model. This 
setting aims to simulate the charging strategies adopted 
by electric vehicles in reality to avoid over-discharging or 
overcharging the battery. In the current market, the output 
power of V2G charging facilities is generally around 15 
kW. Therefore, in this simulation, the maximum charging 
and discharging power is set to 15 kW to align with the 
performance characteristics of V2G charging stations in 
reality.
Table 2 presents the fundamental parameter settings of 
electric vehicles in the simulation study, where Ei

0  rep-
resents the initial battery power of the electric vehicle, and 
Ei

d  represents the battery power required after charging 
is completed. ti

0  is the time when the EV is connected 
to the V2G network, and ti

d  is the time when the vehicle 
disconnects from the network[11].

Table 2 Basic parameters of electric vehicles
Parameters Value Parameters Value

Ei
cap 60 η 0.95

Pdisc -15 T 24

Pchar 15 SOCi min, 0.1

Ei
0 N(0.2×60, 2) SOCi max, 0.9

Ei
d N(0.85×60, 2) a 0.00545

ti
0 N(8:00, 2) b -0.9314

ti
d N(20:00, 2)
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3. The Objective Function for Optimi-
zation
3.1 The peak-to-valley difference and fluctua-
tion of the integrated load
The objective function F1 , as shown in Equation (8), aims 
to minimize the peak-to-valley difference of the total pow-
er in the grid after optimization to reduce the load fluctua-
tions of the power grid[12].
	 F min max P min P1 = −( )( t t) ( ) � (8)
Equation (9) is used to calculate the average total power. 
Meanwhile, the objective function F2 , according to Equa-

tion (10), aims to minimize the variance of the total power 
after optimization. This goal is to reduce the power fluctu-
ations across the entire power grid, thereby enhancing the 
stability of the electricity supplied by the grid.

	 P P Pavg t i t= +
T
1 ∑ ∑

t i

T N

= =1 1

 
  
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base
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	 F min P P2 = −
T
1 ∑

t

T

=1
( t avg )2

� (10)

3.2 User Charging Costs and Battery Degra-
dation Costs
The objective function F3  is shown in equation (11), 

which aims to minimize the total cost incurred by users 
for charging electric vehicles[13]. When the total power Pt  

at a certain moment exceeds the base power Pt
base , it indi-

cates that electric vehicles are drawing electricity from the 
grid for charging; conversely, when the optimized total 
power Pt  is lower than the base power Pt

base , it indicates 

that electric vehicles are supplying electricity to the grid. 
Based on this direction of energy flow, the user’s charging 
costs and the benefits obtained by supplying electricity to 
the grid through V2G technology can be calculated.

F min C P dP min aP b dP3 = = +∑ ∑
t t

T T

= =1 1

∫ ∫P P
P P

t t

t t
base base( t t) ( ) 11( )

The battery degradation model caused by electric vehi-
cle charging, as described in the referenced literature, is 
represented by Equation (12)[14]. Here, parameters a , b
, and c  are values determined by battery characteristics. 
In the simulation, the parameter values provided in the 
literature were directly utilized. The specific numerical 
values of parameters a , b , and c  are listed in Table 3. 
Objective function F4 , calculated according to Equation 

(13), considers the battery degradation costs that all elec-
tric vehicles incur from charging within a 24-hour period. 
This model and objective function configuration take into 
account the economic costs associated with the impact of 
electric vehicle charging on battery health. The goal is to 
reduce the cost burden of battery degradation by imple-
menting optimized charging strategies.

	 E c a P b P c( Batt t t) = + +• •( EV EV)2
� (12)

	 F min E c4 = ∑
t

T

=1
( Batt ) � (13)

Table 3 Battery degradation factor
a b c

0.004 0.075 0.003

3.3 Single Objective Treatment of Multi-Ob-
jective Optimization
To facilitate the treatment of multi-objective optimization 
problems and simultaneously consider the importance 
of different objective functions, this study converts the 
multi-objective problem into a single-objective optimi-
zation problem. This transformation is achieved by nor-
malizing and introducing weighting coefficients for the 
objective functions, as demonstrated by the overall opti-
mization objective function shown in Equation (14).

F min w w w w= + + +( • • • • ) 141 2 3 4F F F F
F F F F

1 2 3 4M M M M

1 2 3 4 ( )

Theoretically, F1M  to F4M  should correspond to the maxi-
mum value that each objective function can achieve. This 
simulation adopts the extreme load conditions during 
unscheduled charging of electric vehicles, as illustrated in 
Figure 1, as a reference to determine the specific values of 
F1M  to F4M . These values are provided in Table 4.

Table 4 Maximum values setting

F1M F2M F3M F4M

319 8866 558 3650.4

Here, w1  to w4  respectively represent the weighting 

4



Dean&Francis

coefficients of the four objective functions. The specific 
settings of the weighting coefficients in this simulation are 
listed in Table 5.

Table 5 Weighting factors setting

w1 w2 w3 w4

0.4 0.2 0.2 0.2

4. Simulation cases
This study utilizes the typical daily load of residential 
buildings as the fundamental data and uses the Matlab 
environment in conjunction with Yalmip and Cplex tools 
to solve the issue. In the experiment, a total of 10 electric 
vehicles participated in the charging process, of which 5 
electric vehicles are planned to join the V2G network.
Figure 3 illustrates the initial network load, the total net-
work load with electric vehicles being charged at irregular 
intervals, and the optimized network load post-optimiza-
tion. Additionally, it provides an overview of the entire 
charging and discharging activities of an electric vehicle 
throughout the day.

Figure 3 Optimized grid system load
From the overall analysis of Figure 3, it is evident that the 
peak-to-valley difference of the optimized total load has 
significantly reduced. Additionally, there is an increase in 
load during off-peak periods and a decrease in load during 
peak periods, indicating the successful implementation of 
peak shaving and valley filling in the grid load.
Figure 4 displays the electricity price trend chart based on 
real-time total load fluctuations. Compared to traditional 
fixed time-of-use pricing, dynamically adjusted electricity 
prices based on load variations can more accurately reflect 
the actual charging demands of the system and provide 
more reasonable pricing. This dynamic pricing strategy 

helps guide user charging behavior more effectively, en-
couraging users to charge during periods of lower grid 
load. This approach helps avoid the concentration of 
charging during peak periods and optimizes the distribu-
tion of grid load.

Figure 4 Comparison of two electricity 
pricing models

Figure 5 illustrates the charging and discharging activities 
of the 10 electric vehicles over a 24-hour period. It can be 
observed that the SOC of all electric vehicles adheres to 
the predefined boundary conditions, staying within the set 
minimum and maximum values. Additionally, it addresses 
the charging needs of electric vehicles and provides de-
tailed observations of the charging and discharging behav-
ior of each electric vehicle over various time periods.

Figure 5 SOC of electric vehicles
The study also compares the results of four objective 
functions under uncontrolled charging and optimized or-
dered charging scenarios, which are listed in Table 5.
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Table 5 Weighting factors setting

Peak Valley F1M F2M F3M F4M

Before optimization 495 176 319 8866 558 3650
After optimization 420 221 199 5537 251 3179

From the data in the table above, it is evident that the 
impact on the grid is significant when electric vehicles 
charge without control. This can lead to increased peak-to-
valley differences, causing grid fluctuations. Additionally, 
if users charge their devices simultaneously in a concen-
trated manner during the same time period, it can result in 
higher charging costs. Through the multi-objective optimi-
zation model constructed in the study, the peak-to-valley 
difference and fluctuations of the system are significantly 
reduced compared to uncontrolled charging, resulting in 
a smoother grid load curve. At the same time, the costs 
incurred by users for charging and battery degradation are 
also significantly reduced.

5. Conclusion
By conducting an in-depth study on the charging behavior 
of electric vehicles and incorporating grid peak-to-valley 
values, mean square deviation, user charging costs, and 
battery degradation costs into the optimization objectives, 
this study has meticulously adjusted the charging and 
discharging power of electric vehicles in Vehicle-to-Grid 
(V2G) networks. Through optimization, improvements in 
the target outcomes have been achieved, and more rational 
time-of-use pricing schemes can be proposed based on the 
optimization results. The case analysis of this study yields 
several key conclusions:
1) In the absence of proper scheduling, uncontrolled 
charging of a large number of electric vehicles can lead 
to an increase in the peak-to-valley difference in the grid, 
thereby adversely affecting the grid’s stability.
2) Compared with relying solely on fixed time-of-use pric-
es, dynamically adjusting real-time prices based on load 
fluctuations can more effectively guide users to charge at 
optimal periods. In addition, the real-time pricing scheme 
derived from the optimization results will also assist the 
power grid in formulating a more scientific and reasonable 
pricing strategy.
3) By establishing a multi-objective optimization model 
that considers both grid load fluctuations and user expen-
ditures, simulation results demonstrate that achieving a 
win-win situation for both the grid and electric vehicle 
users is feasible under reasonable scheduling and pricing 
strategies.
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