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Abstract:
Face recognition, as a convenient, natural, and widely applied emerging technology, has achieved many significant 
research results in recent years. 2D face recognition has drawn extensive studies, while previously,2D face recognition 
is too sensitive to variations in features like facial expressions. To avoid the shortcoming, more attention was paid to 
the optimization of algorithms, stronger computational capabilities, and fusion strategies, which contributed greatly to 
the accuracy of face recognition and made it more outstanding. Compared to existing methods, RGB-D images tend to 
be more robust and reliable. Based on different processing methods of RGB-D 3D face data, researchers have proposed 
numerous 3D face recognition methods, such as 3D reconstruction methods from monocular RGB-D images, methods 
based on point cloud data, and methods based on image depth map data. This paper focuses mainly on the image depth 
map data method, analyzing its rich development history and its unique advantages and disadvantages in RGB-D 3D 
face recognition. Additionally, we introduced some common RGB-D face datasets, analyzing data collection methods.
Keywords: RGB-D face recognition, Feature-level fusion, Hybrid Fusion, Deep Learning Face 
Representation, 3D face data

1 Introduction
With the rapid development of artificial intelligence, 
face recognition technology has become one of the core 
technologies in many fields, such as identity verification, 
security monitoring, human-computer interaction, etc. 
Sukanya et al.[1]proposed a survey of several available 
recognition methods, revealing the very significance of 
human face recognition. Chihaou et al.[2]and Günther et 
al.[3] have given a relatively comprehensive summary of 
2D face recognition. However, it’s clear that traditional 2D 
face recognition methods have limitations in dealing with 
illumination changes, posture changes, and expression 
changes. In this regard, face recognition technology based 
on RGB-D data not only includes the texture information 
of color images (RGB) but also integrates the geometric 
shape information of depth images (D) by generating their 
corresponding depth maps, thus providing richer and more 
robust feature representations for face recognition.
3D morphable models(3DMM)[4] is a statistical model 
that obtains a low-dimensional representation of face 
shape and texture through principal component analysis of 
a large amount of 3D face data. Khan[5] compared diverse 
3DMM techniques, which emphasize different issues, like 
texture estimation, shape-controlling limits, and so on. By 
combining RGB-D data with 3DMM, more accurate face 
shape estimation and texture recovery can be achieved.
Feature extraction methods, as one of the new methods 

for processing RGB-D data, have been proposed in recent 
years, such as Rahim et al.[6] attempted to supplement 
feature extraction with local binary patterns (LBPs), and 
some researchers extracted features from the geometrical 
shapes of the face in order to get sufficient detailed infor-
mation, but in general, the accuracy of this method still 
needs to be improved.
The emergence of deep learning[100] has made face rec-
ognition methods more sensitive to changes in the face. 
It has also made various models smoother when dealing 
with conditions such as different noises, different lighting, 
and different occlusions. However, deep learning also 
brings many challenges to face recognition and faces in 
real conditions can be affected by low-quality data acqui-
sition, posture deformation, and environmental changes. 
Wang et al. [95]provided a comprehensive review of the 
advanced progress in deep face recognition technology, 
covering a wide range of aspects, including algorithm 
design, protocol setting, and application scenarios. Liu et 
al.[96]classifies the data into two categories, virtual sam-
ple methods, and generic learning methods, based on dif-
ferent approaches to the data and analyses them separate-
ly. However, these are still not sufficiently comprehensive 
in their coverage. Zhou et al.[97]represented a detailed 
review of its history and categorized the frontier research 
into three different classes. Ning et al.[98]conducted a 
general overview of all sorts of face generation models, 
and the performance of existing models was examined 
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through experiments.
3D face reconstruction technology has been used in a 
wide range of fields, including plastic surgery and the 
entertainment industry, thanks largely to its advantageous 
features. These features may include a high degree of ac-
curacy and realism. Cava et al.[94]reviewed existing 3D 
face reconstruction algorithms and analyzed both their 
obstacles and their achievements.Sharma et al.[99] Fur-
ther review was made of various aspects of reconstruction 
methods, including deep learning, epipolar geometry, and 
so on.
In this paper, we introduce and analyze in detail the dif-
ferent ways of processing RGB-D data, focusing on face 
recognition based on 3DMM, face recognition based on 
feature extraction, face recognition based on deep learn-
ing, face recognition based on face reconstruction, as well 
as the commonly used datasets for training and validating 
the data, and give a summary and evaluation of the latest 
methods in each area, and make predictions and outlooks 
of the prospects, taking into account the development 
trends and the potential problems at present.

2 RGB-D 3D face
In recent years, with the continuous advancement of tech-
nology and the deep development of the computer vision 
field, the application of RGB-D information in 3D facial 
recognition has gained increasing attention. RGB images 
provide rich color and texture information.

2.1 3D Morphable FaceModel and Face Ac-
quisition
In recent years, a variety of methods have emerged in the 
field of 3D facial modeling, dedicated to improving the 
robustness and performance of models. Zhong et al.[7]
proposed an identity authentication method based on joint 
constraints, introducing central loss in model training to 
effectively capture individual expression, identity, posture, 
and lighting information, ensuring the authenticity of the 
generated faces. Luo et al.[8] used a random forest algo-
rithm to estimate head models and integrate the optimal 
weights of facial vertices, thereby improving the robust-
ness and accuracy of facial modeling. However, there 
are still deficiencies in reconstructing facial details. Tran 
et al.[9] used an approach of directly inputting uncon-
strained images, mapping them to 3D shapes and textures 
through a decoder in combination with projection param-
eters, achieving reconstruction of the original input faces. 
Compared to traditional 3DMM algorithms, this method 
is more compact and faithful, with a learning process that 
only requires weak supervision, offering more flexibility. 
On the other hand, Jiang et al.[10] noticed the limitation 
of 3DMM in visually discriminating face shapes after 
model reshaping and proposed the Shape Identity Rec-

ognition (SIR) metric, effectively addressing the lack of 
datasets simultaneously possessing identity information 
and 3D image data. Zhu et al.[11]created the FG3D data-
base through a non-rigid ICP approach constrained by tex-
ture and combined it with the Fine-Grained Reconstruc-
tion Network (FGNET) to achieve fine-grained geometric 
reconstruction of faces, improving the precision of face 
acquisition. Li et al.[12], based on 3DMM, built a coarse-
to-fine framework of deep neural networks, introducing 
semantic consistency constraints to improve the perfor-
mance of 3D facial reconstruction and depth annotation. 
However, accurately depicting fine-grained facial details 
remains challenging. Lastly, Zhong et al.[13]established a 
3D facial regression framework encoded by identity, ex-
pression, and posture parameters, employing a regression 
model learned from synthetic data based on CycleGAN. 
By applying triple constraints of joint embedding, depth 
imaging, and shape coherence in surface space, they effec-
tively enhanced the coherence and robustness of 3D faces. 
These methods focus on improving the robustness and 
performance of 3D facial modeling, yet further progress 
is still needed for more significant improvements. While 
these methods concentrate on enhancing 3D facial model-
ing, further progress is deemed necessary for substantial 
improvements.

2.2 Feature Extraction and Classification
This technique extracts multidimensional features on RGB 
images, focusing on multimodal feature fusion and atten-
tion mechanisms. Dutta et al.[14] utilized a facial com-
ponent mathematical model to generate basic facial com-
ponents in four directions. They then extracted features 
from these components along with four other selected 
mixed components and applied genetic algorithms for the 
crossover fusion of feature vectors. This method not only 
improved the performance of target recognition but also 
significantly reduced the feature storage space required by 
traditional methods. Importantly, this method of feature 
selection could also be directly applied to result detec-
tion, ensuring accurate target identification. Zhu et al.[15] 
constructed attention fusion network, CMANet, which 
focuses on the role of soft masks and soft weights in the 
homomodal attention mechanism. Compared to traditional 
hard mask fusion methods, this approach better captures 
all potential information areas. Additionally, the network 
fuses multimodal features to ensure the unique advantages 
of each modality are fully utilized. Boumedine et al.[16] 
designed a 3D facial recognition system, which is based 
on extracting features in the normal direction using the 
SURF algorithm. By assigning the best weights to each 
component through the nearest classifier, they achieve fea-
ture fusion. Although this method performs excellently in 
terms of processing speed and accuracy, its adaptability to 
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occlusions and head tilts could be better, with a need for 
improved universality. Sui et al.[17] represented 3D scan 
images using three types of attribute maps and inputted 
the combination of attributes into the Efficient Feature Fu-
sion System FFNET-M through multimodality. They also 
used two larger kernels, F3DNetsM and VGG16 masks, 
allowing FFNET-M to focus on both 2D and 3D spaces. 
This method excels in extracting 3D depth features and 
integrating 2D texture information, but the training cost 
is high. Wardeberg et al.[18]proposed a graph convolu-
tion-based feature extraction network for direct feature 
extraction on grids with a simple network model size. 
However, the mapping approach could be better than the 
method in terms of performance due to the training size 
problem for the inter-class separation problem. The meth-
od shows the potential of lattice-based feature extraction 

methods since it can have a more impressive recognition 
rate under datasets such as BU3DFE at 0.1% false ac-
ceptance rate. Sanyal et al’s[19] RingNet(Fig.1) utilizes 
datasets of individuals that appear repeatedly and estimat-
ed 2D facial features. The loss method employed by the 
network provides the generator with discriminative capa-
bilities, while the FLAME model separates expressions 
and other features in shape, making RingNet’s parameter 
changes more flexible. This design gives RingNet high ro-
bustness under conditions of head illumination, occlusion, 
and more. Regarding these, feature extraction-based face 
recognition offers advantages such as effective feature 
capture and reduced computational complexity, but it may 
struggle with certain variations and incur high training 
costs.

Fig.1: RingNet, taking multiple images of one single person(Subject A) and an image of a 
different person(Subject B) during training, maintains face consistency between the same 

object and shape inconsistency between various objects.
2.3 Deep Learning-Based Methods
With the flourishing development of deep learning tech-
nologies, the integration of RGB-D information with 
advanced algorithms such as neural networks has further 
propelled the performance enhancement of 3D facial rec-
ognition. Researchers have employed large-scale RGB-D 
datasets for model training and optimization, enabling the 
system to automatically learn more advanced and robust 
feature representations. This not only improves the ac-
curacy of recognition but also allows the system to adapt 

more quickly to new scenes.
2.3.1 Based on Network Structure Optimization

This approach focuses on improving the performance and 
accuracy of facial recognition systems by continuously 
optimizing network structures and parameters. Zeng et 
al.[20] developed the Deep Fine-to-Fine Network (DF-
2Net), which achieved significant progress. The network 
meticulously designed three modules and significantly 
optimized the effect of facial reconstruction through in-
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dependent training, utilizing diverse data and training 
strategies. Especially in the task of converting a single 
facial image into a high-fidelity face, DF2Net demonstrat-
ed outstanding capabilities, achieving remarkable results. 
Meanwhile, Dutta et al.[21]  introduced sparse principal 
component analysis during the convolution phase to learn 
multi-level filter banks, further combined with binary 
hash indexing and block histogram pooling techniques, 
and ultimately employed a linear support vector machine 
to classify the extracted features. The scale of this system 
can be flexibly adjusted according to the demand for accu-
racy. Notably, even with limited data, the system can still 
achieve high facial recognition accuracy. Additionally, its 
concise two-stage convolution design allows it to easily 
handle most scenarios. Li et al. [22]introduced normal-
ization and hierarchical activation functions in CNNs, 
followed by the application of probabilistic max-pooling 
techniques to retain more feature representations. This 
method ensures accuracy but struggles with faces un-
der adverse conditions. He et al.[23] incorporated fine-
grained discriminators and wavelet-based discriminators 
into end-to-end deep networks, capable of generating 
high-resolution facial images and ensuring the integrity 
of facial images. He et al.[24]also attempted to introduce 
a self-supervised 3D facial reconstruction loss with two 
auxiliary functions in the 2D facial recognition pathway, 
forcing the FR to encode more facial depth information 
and reflectance information, which can serve as a baseline 
model for downstream tasks. Cui et al.[25] studied orig-
inal strategies in fusion. They improved the performance 

of their method by weighing different fusion strategies and 
mixing them under specific rules. This method performed 
excellently on a self-built RGB-D dataset with stricter 
requirements for posture and lighting conditions, fully 
proving its effectiveness and practicality. Noting the huge 
potential in the ability and accuracy of point clouds to ex-
tract information, Atik et al.[26] uses the 3D features ex-
tracted from the point cloud to generate 2D images from 
which depth maps can be produced. This method elimi-
nates the process of preprocessing the data and allows for 
scaling up the data, but the accuracy of face recognition 
is not satisfactory enough, and there is still much room 
for improvement. Hu et al.[27] collected a high-quality 
database, Extended-Multi-Dim, which includes color im-
ages, depth images, and 3D point clouds of each object. 
Through their standard protocol for fully utilizing features 
and image information, they demonstrated the feasibility 
of enhancing depth information quality to improve the 
accuracy of depth FR, thus improving the performance of 
models based on low-quality data through high-quality 
data. Lee et al.[28] constructed a comprehensive learn-
ing framework(Fig.2) capable of training multiple tasks 
simultaneously, including RGB facial parsing, depth 
facial parsing, and the mutual conversion between RGB 
and depth. This innovation achieved flexible conversion 
and end-to-end learning between RGB and depth parsing 
learning, providing strong support for supplementing an-
notated depth data. This method made significant progress 
in the diversity of facial parsing tasks and the utilization 
of depth data.

Fig.2: Learning Structure Lee Constructed and its results on face parsing, depth face parsing, 
and RGB-D Domain Translation
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In the meantime, Li et al.[29] adopted a shape-based land-
mark detection method to align facial features. Through 
this alignment, they further trained transfer learning con-
volutional networks to adapt to diverse facial expressions. 
Ultimately, their convolutional neural network showed 
excellent performance in facial recognition tasks. This 
method not only reduced the data volume of the original 
3D whole face but also made the convolutional network 
more efficient in network coding. Neto et al.[30] utilized 
a hybrid convolutional method based on shallow learn-
ing feature representation, suitable for both classification 
tasks and feature extraction modes. By combining manu-
ally created feature maps and 3D facial recognition using 
a constructed convolutional neural network, this method 
significantly reduced the model’s training volume and 
computation time and displayed strong robustness against 
expression changes. This research provides a new solution 
for facial recognition under different expression changes. 
Niu et al.[31] proposed a 3D facial reconstruction meth-
od based on a single image. They reconstructed 3D faces 
from single images using the 3DMM method and obtained 
corresponding depth images. Combined with curvature 
feature extraction technology, this method efficiently ex-
tracts features from 3D faces and matches them with RGB 
images in the database to complete facial recognition. 
This method’s outstanding advantage is its adaptability in 
low-light environments, though its accuracy in processing 
low-quality depth images still needs further improvement.
Deep networks exhibit significant superiority in feature 
extraction. Huang et al.[32]employed multiple networks 
for facial recognition, including feature restoration net-
works, feature extraction networks, and embedding match-
ing modules, allowing for facial model preprocessing and 
improving the efficiency of facial recognition. Zhao et 
al.[33] proposed the Hierarchical Structure Lightweight 
Multi-Scale Fusion Network (LMFNet), combining mid 
and low-level adjacent layers with a Multi-Level Multi-
Scale Feature Fusion (ML-MSFF) module, effectively 
extracting local information and combining it with global 
features obtained from the global convolutional network 
for a more comprehensive representation of faces. While 
this method improves the fluidity of human-machine inter-
action, it also reveals a vulnerability to noise interference. 
Khan et al.[34] contributed a deep neural estimation mod-
el, using a pre-trained network to initialize the encoder 
and simply inputting extracted features into a straightfor-
ward decoder to output high-quality facial depth maps. On 
public datasets, with high-quality training data, this meth-
od produces more accurate results. Compared to other 
depth estimation techniques, it shows significant improve-
ments in volume and computational cost. Ding et al.[35] 
concatenated complementary facial features into high-or-

der feature vectors and compressed dimensions through 
a three-layer stacked autoencoder (SAE), suitable for 
studying nonlinear dimensionality reduction. Hu et al. [36] 
constructed MCFLNet, which could enhance the perfor-
mance of RGB-D FR under complex conditions by using 
a cross-modal learning constraint to extract specific modal 
features and modal shared features, utilizing a mutual re-
straint mechanism to extract complementary features. This 
method’s effectiveness in handling multimodal data has 
been verified. Cai et al.[37] extracted complementary fea-
tures under four overlapping facial component patches, re-
fined specific facial structures with depth information and 
used a global descriptor to describe identity information. 
Additionally, the method compensates information using 
the upper half of the global descriptor and rigid local de-
scriptor. This method has high recognition efficiency but 
is not sensitive enough to handle large posture changes.
To address the vulnerability of feature extraction methods 
to noise interference, Zeng et al. [38]normalized specific 
depth facial images and utilized a feature extraction net-
work along with two convolutional neural networks to 
extract robust information, reducing the impact of deter-
ministic factors such as noise, expressions, and lighting 
conditions. This method has a high generalization ability 
for the poses and expressions of recognized faces but 
has certain limitations in preserving facial identity infor-
mation. Garg et al.[39] used a deep learning feature ex-
traction and classification network, DeBNet, which filters 
all noise to make the system more stable. The network 
excels in recognizing photo impersonation, but due to the 
extensive features required, the training process is more 
time-consuming. In summary, these studies have made 
significant progress in the field of facial recognition and 
depth map generation, improving the accuracy, robust-
ness, and efficiency through innovative methods and tech-
niques. Gratis et al.[40] extracted RGBD patches around 
image points of interest, used CNNs, among others, to 
learn feature descriptors for facial patches, and applied the 
SRC algorithm to corresponding patches, finally generat-
ing the classification results through a score-level fusion 
scheme. This method achieved sufficient robustness on 
multiple benchmark RGBD databases. However, chal-
lenges and issues such as noise interference, pose changes 
and preservation of identity information still need to be 
addressed. Future research can focus on these areas to 
achieve further breakthroughs and progress.
In feature extraction, networks often incorporate attention 
mechanisms to improve performance. Uppal et al.[41] 
proposed an attention mechanism that effectively guides 
deep networks in extracting visual features from two mo-
dalities. By creating attention maps, this mechanism can 
focus on parts rich in features and salient parts, thereby 
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facilitating feature classification. In addition, this mech-
anism is versatile and can be combined with information 
from other features, guiding the network to focus on 
specific information. Zhang et al.[42] adopted a coarse 
supervision strategy to mitigate the common issues of 
noise and low resolution in depth maps. They incorporat-
ed a Branch Attention Module (BAM) and Edge Sensitive 
Attention Module (ESAM) into the refinement process 
for selective feature fusion and depth discontinuity resto-
ration, respectively. Through this method, they were able 
to restore depth structures with finer details. However, the 
method often underperforms when depth maps are miss-
ing. Lin et al.[43] introduced an attention decomposition 
mechanism in the feature extraction process of mixed fea-
ture maps, which successfully decomposed features like 
pose and identity. They combined the Gradient Reversal 
Layer (GRL) with continuous index domain adaptation 
and constructed an embedded Convolutional Neural Net-
work (eCNN) to simplify operations and reduce parameter 
size. This method effectively bridged the domain gap for 
frontal and profile faces, achieving a considerable recog-
nition rate. Wang et al. [44]contributed a facial depth map 
transformer that progressively estimates facial depth maps 
based on RGB images and integrates facial depth maps 
through a Multi-Head Depth Attention (MDA) mecha-
nism, thereby enhancing backbone features. This method 
facilitates facial image monitoring with facial depth maps, 
providing convenience for detecting low-quality com-
pressed facial images.
Adversarial network models are commonly utilized in fea-
ture extraction. The adversarial algorithm MLAT proposed 
by Yu et al.[45] dynamically gives the corresponding 
adversarial samples according to the deep 3DFR model 
and uses a meta-learning framework to ensure the perfor-
mance of the original algorithm to optimize the accuracy 
of 3DFR by obtaining a variety of adversarial samples in 
a round-robin optimization. This method can use fewer 
face data to optimize the model and get more considerable 
results. Jin et al.[46] designed a Generative Adversarial 
Network model (D+GAN) that generates higher quality 
facial depth maps, using NSST to transform and merge 
high-frequency and low-frequency sub-band images, then 
inverting the transformation to obtain the fused image, 
demonstrating strict robustness. Gecer et al.[47] designed 
an adversarial conversion method that does not require a 
large amount of paired data, based on a semi-supervised 
adversarial learning framework and ensemble-based loss, 
maintaining the pose, lighting, and other information of 

newly generated facial images, as well as preserving iden-
tity information, avoiding some flaws of adversarial con-
version methods. Uppal et al.[48] proposed a Teacher-Stu-
dent Adversarial Architecture (TS-GAN), significantly 
enhancing facial recognition performance through super-
vised mapping relationships between teacher and student 
components. However, this network might overlook other 
feature information when focusing on specific informa-
tion, leading to a lack of integrity in the involved infor-
mation. To address this issue, Uppal et al.[49] proposed a 
dual-layer attention mechanism for merging features from 
RGB and depth images. They sequentially used LSTM 
to learn the relationship between fused feature maps and 
utilized convolution to focus on spatial features. During 
the learning process, they used transfer learning from the 
training process of pure 2D RGB images as guidance, 
thereby achieving accurate results. However, this method 
incurs a high training cost.
Another drawback of feature extraction is the difficulty in 
handling blurry or flawed information. Ghosh et al.[50] 
proposed a representation learning algorithm that effec-
tively establishes representational associations between 
RGB images and depth maps by integrating heterogeneous 
data and features. This algorithm showed a low depen-
dence on depth maps in recognition tasks, producing fea-
ture-rich results that are particularly suitable for scenarios 
where depth map information is blurred or degraded. This 
research provides new insights into handling incomplete 
depth information. Zhu et al.[51] contributed a Progres-
sive Multimodal Fusion Framework (PMMF) aimed at 
finely optimizing image details and rectifying errors in 
depth recognition for depth images captured by low-cost 
RGB-D cameras. By processing and recognizing depth 
maps and RGB images separately and then leveraging 
the implicit complementary information between them, 
PMMF combined the original fusion results, significantly 
enhancing the robustness of recognition information. This 
method has made significant progress in balancing the 
cost and accuracy of depth recognition. Lin et al.[52] pro-
posed a two-stage pipeline(Fig.3) based on the pix2pix’s 
deepened image capabilities and the Multi-Quality Fusion 
Network (MQFNet), optimized for high-quality depth im-
ages. By extracting and merging multi-level, multi-quality 
features from “conv” and “res” pipelines, this method 
excels in processing low-quality depth facial images. This 
research also provides a new solution for handling facial 
images of different qualities in depth.
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Fig.3: The two-stage pipeline architecture of MQFNet Lin proposed
In recent years, depth networks involved in RGB-D fa-
cial recognition have also touched on many other areas. 
Thamizharasan et al.[53] utilized conditional generative 
adversarial networks (cGANs) to extract gender and age 
from Structured Light (SL) and structure maps generated 
from SL, demonstrating the applicability of IRDP images 
in facial analysis. Pecoraro et al.[54] focused on the syn-
ergistic action of channel self-attention and convolution, 
proposing the Local Multi-Head Channel Self-Attention 
module (LHC: Local Multi-Head Channel self-attention). 
This channel-based module effectively utilizes the con-
stant structure of images, applying convolution locally for 
facial recognition, providing new directions for the devel-
opment of the computer vision field.
2.3.2 Based on Multi-Branch Structure

In the development of facial recognition, multi-branch 
processing, as a powerful mechanism, allows for analyz-
ing facial data from multiple angles and levels. It enables 
the capture and fusion of information from different data 
sources, such as color images and depth images, achiev-
ing multi-level improvements in the accuracy of facial 
recognition. You et al.[55] calculated geometric informa-
tion of 3D facial data based on discrete surface curvature 
flow and “flattened” it along with color information into 
a two-dimensional plane. By modifying the input layer 
of CNNs, they output images with nine channels. This 
multi-channel deep network showed considerable accu-
racy, but the model training process was complex. Lin et 
al.[56] designed dual CNN pathway networks for color 
images and depth images, respectively, using a designed 
loss function to strengthen two kinds of distinct, comple-
mentary features and fusing them beforehand to preserve 
these features. This method is beneficial for image classi-
fication. Zhao et al.[57] added a capsule network on top 
of a multi-scale local and global feature fusion module 

to strengthen 3D positional information, capturing more 
details in facial information and reducing redundant infor-
mation in fused features. This method can provide more 
feature information for faces with missing features, but it 
still underperforms for low-quality 3D FR that changes 
over time. Zheng et al.[58] aimed to address the limita-
tions of using low-resolution facial depth maps, proposing 
an edge-guided convolutional neural network that includes 
an edge prediction subnetwork and a depth reconstruction 
subnetwork. This method first predicts edges from the in-
put for more accurate restoration, then uses concatenated 
features to reconstruct depth maps, accurately restoring 
high-frequency facial depth maps and revealing more 
edge details.
Neto et al.[59] proposed a flow attention network, ef-
fectively extracting feature information from deep im-
ages by incorporating self-attention and cross-attention 
mechanisms into the architecture, focusing the network’s 
attention on facial information. This method facilitates 
better integration of all information from different data 
streams, including bridging the gap between high and low 
resolutions, making it easier to improve recognition rates 
in low-resolution features, and enhancing the robustness 
of recognition through different streams working col-
laboratively. Jiang et al.[60] utilized spatial and channel 
attention mechanisms, based on ResNet18, to create three 
branches that can capture RGB, depth map, and their 
fused modal features, performing a second step of feature 
extraction in a shared layer after a secondary fusion, ap-
plying complementary information contained in RGB and 
depth maps for end-to-end multimodal fusion facial recog-
nition. This model performs well, but the overall process 
is cumbersome, and training costs are high. In summary, 
the facial recognition models supported by multi-branch 
structure deep networks excel in capturing details and 
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overall features. However, the current challenge lies in 
optimizing the training process of multi-branch networks 
to reduce computational costs while achieving comparable 
performance.
2.3.3 Based on Loss Function

In deep learning-based face recognition, well-designed 
loss functions can also effectively improve recognition 
accuracy and model generalization capabilities. Li et 
al.[61] replaced the three channels of RGB images with 
depth map channels, fusing RGB and depth maps before 
encoding and final recognition, i.e., MFEViT, introducing 
visual transformers in 2D+3D FER. This optimized struc-
tural features of RGB images and multimodal data sig-
nificantly reduced the sample demand and mitigated the 
impact of noise on the training network, resulting in ro-
bust recognition results. Zheng et al.[62] concentrated on 
the limitations of existing multimodal fusion methods in 
recognizing different facial features, proposing a Comple-
mentary Multimodal Fusion Transformer (CMMF-Trans), 
which can supplement fused feature information. This 
transformer performs well on depth-encoded maps, espe-
cially under special conditions like shadows and lighting, 
and maintains good stability under extreme conditions. 
Khan et al.[63] proposed SOA neural architecture, which 
automatically collects the optimal parameters, reduces 
the model complexity in estimating the training model, 
enables the model to estimate the parameters for a single 
frame of a 2D image to estimate the local details, and 
normalizes the weights by introducing weights to estimate 
the depth residuals. Jiang et al.[64] regularized the distri-
bution of features recognized with additional attributes, 
proposing an attribute-aware loss function based on CNN, 
making the training data collection more uniform and en-
hancing the model’s accuracy. This method trains fewer 
models and has stronger versatility, promising significant 
research potential in the future. Zhang et al.[65] proposed 
conditional generative adversarial networks (cGANs) to 
fuse multimodal matching results in the process of recon-
structing depth images, reducing the lossy compression of 
low-level information during data transmission to ensure 
result accuracy. In summary, by designing different loss 
functions, the accuracy and stability of facial recognition 
have been ensured, and the models’ generalization capa-
bilities have been enhanced.

2.4 3D Face Reconstruction
This method employs deep learning techniques to recov-
er the three-dimensional shape and texture information 
of a face from input image or video data, which is then 
compared to produce recognition results. Kemelmacher 
et al.[66] focus on the global similarity of faces, extract-

ing a universal shape from a single reference model and 
reconstructing the face by combining reflectance proper-
ties, illumination, depth values of boundary conditions, 
and multiple shadow information. This approach has low 
requirements for lighting conditions and can robustly gen-
erate pose information. Dib et al.[67]introduced a differ-
entiable ray tracer into a CNN encoder for monocular face 
reconstruction. Under the method of deep network and 
differentiable network rendering ray tracing, high-quali-
ty lighting and BRDF are used to capture more detailed 
diffuse and specular reflections. This method can produce 
richer reflections, making the face reconstruction results 
more reliable under lighting conditions and the recogni-
tion results more robust.
To improve the accuracy of the reconstruction process, 
Xian et al.[68] Based on their method of using facial point 
clouds, facial landmarks are introduced in the reconstruc-
tion process to optimize details. They selectively smooth 
noise and holes in different areas of the face, making fa-
cial reconstruction more reliable. This method facilitates 
the direct acquisition of RGB-D images but has strict 
requirements for the depth range and is not conducive to 
processing multiple expressions. Petkova et al.[69] cap-
ture faces from multiple-view approaches, sequentially ex-
tracting and processing RGB and 3D features in parallel, 
and back-project facial key points. The 3D facial points 
obtained in this way are used for rough alignment steps, 
followed by a second processing to refine the results. This 
method achieves an average distance of less than 2 milli-
meters for 90% of the points between the generated model 
and the reference model when artificially generated data 
is used as input, demonstrating strong reconstruction ca-
pability. Hence, facial reconstruction that combines tech-
niques like multiple shadow information, ray tracing, and 
facial landmarks can ensure the robustness of recognition 
results, but the method still poses certain challenges.

3 Experiments
3.1 RGB-D Facial Data
The AFW dataset[70], comprising 205 images housing 
473 faces, meticulously annotates each face with a square 
bounding box, six key points, and three pose angles. 
Contrastingly, the AFLW dataset[71], a vast repository of 
25,993 images spanning different color spaces, showcases 
a rich array of poses, expressions, and ethnicities, each 
annotated with 21-point annotations. The LFPW[72] data-
set includes 1,432 images downloaded from the internet, 
containing 29-point annotations that enhance the position-
ing of the eyes and chin. Helen dataset[73] contains 2,330 
images with highly detailed, consistent, and accurate main 
facial components, annotated with 68 points, which is the 
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most commonly used annotation scheme today.
The LFW[74] database, a formidable collection of 13,233 
facial images representing 5,749 individuals, captures a 
broad spectrum of poses, lighting conditions, expressions, 
and age variations, providing a comprehensive resource 
for facial recognition research. The CASIA-WebFace[75] 
encompasses 494,414 facial images of 10,575 individu-
als, including diverse angles, nationalities, and lighting 
information. The Celebrities in Frontal-Profile in the Wild 
(CFP)[76]is a smaller dataset that collects 7,000 images of 
500 people, including both frontal and profile images with 
random expressions. The Public Figures Face Database 
(PubFig)[77] is a dataset collected from internet search 
engines, featuring 58,797 images of 200 celebrities with 
different facial features and lighting conditions, providing 
corresponding annotation information and sampling strat-
egies for ease of analysis. The CAS-PEAL database[78] 
comprises 99,594 photos of 1,040 Chinese people, show-
casing variations in orientation, expression, accessories, 
etc., with 21 different head postures. WebFace260M da-
teset[79], as the largest facial database to date, consists of 
260 million faces from 4 million identities, containing a 
large amount of noisy data. The high-quality data obtained 
through automatic cleaning resulted in the WebFace42M 
dataset, comprising 42 million images from 2.06 million 
identities, making it the largest public facial recognition 
dataset currently available.
WiderFace dateset[80] includes 32,203 images and 
393,703 annotated faces, with training, validation, and 
test sets that span a wide range of scales, poses, light-
ing conditions, expressions, and occlusions. The IJB-A 
dataset[81] includes images of 500 subjects, totaling 
5,712 images, with a wide range of facial poses, image 
resolutions, and lighting conditions, introducing set-to-
set matching composed of heterogeneous media, with 
subjects from around the world showing rich diversity. 

CelebA dataset[82], with 202,599 facial images of 10,177 
celebrities, each annotated with five landmark coordi-
nates, includes 40 different attribute annotations such as 
glasses, black hair, etc. LS3DFace’s data, gathered from 
multiple public datasets, includes 31,860 corresponding 
images for 3,153 subjects. UoY datebase[83] collected 
over 5,000 sets of color images and 3D mesh data using 
a high-density structured light camera, including infor-
mation on more than 300 subjects. The Bosphorus data-
set[84] encompasses images of 105 subjects with up to 
4,666 images, faces equipped with up to 34 expressions, 
and up to 13 postures. UMBDB[85] contains many faces 
obstructed by objects like hats and scarves, with 1,473 
pairs of depth and color images for 143 subjects used 
for testing 3D facial analysis with obstructions. 3DTEC 
dataset[86] consists of 428 images from 241 subjects, in-
cluding 107 pairs of highly similar twin faces. Texas-3D 
dataset[87] includes 1,149 images of 118 people, each 
annotated with their gender, ethnicity, facial expressions, 
etc., and several artificially located facial anthropometric 
coordinate points.FRGC-v2.0 dataset’s[88] 4,007 images 
of 466 subjects in 3D verification settings offer insights 
into the challenges and opportunities posed by three-di-
mensional facial recognition. Most of the 5,711 images of 
509 individuals contained in the Lock3DFace dateset[89] 
contain relatively strong noise, with a wide span of vari-
ation in pose, demeanor, occlusion, etc. F3D-FD[90] 
collected multi-angle images of 2,476 individuals, which 
were not impeded. IIIT-D[91] collected 4,605 images of 
106 subjects using Kinect, which contained a wide variety 
of demeanor variations.KinectFaceDB[92]collection of 
faces captured at different periods with diverse occlusions 
and lighting conditions offers insights into the robustness 
of facial recognition algorithms in dynamic environments.
BU-3DFE[93] contains 2,500 images with various facial 
expressions collected from 100 subjects.

Table 1:Common RGB-D databases
Name of dataset occlusion expression Number of images Number of identity

AFW No No 205 479
AFLW No No 25993 -
LFPW No No 1432 -
Helen No No 2330 -
LFW Yes Yes 13233 5749

CASIA-WebFace No No 494414 10575
CFP No Yes 7000 500
Pubg No Yes 58797 200

CAS-PEAL No Yes 99594 1040
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Name of dataset occlusion expression Number of images Number of identity
WebFace260M Yes No 260M 4M
WebFace42M Yes No 42M 2M
Wider Face Yes Yes 32203 393703

IJB-A No No 5712 500
CelebA Yes Yes 202599 10177

LS3DFace No No 31860 3153
UoY No Yes 5000 350

Bosphorus Yes Yes 4666 105
UMBDB Yes Yes 1473 143
3DTEC No Yes 428 241

Texas-3D No Yes 1149 118
FRGC-v2.0 No Yes 4950 466
Lock3DFace Yes Yes 5711 509

F3D-FD Yes No - 2476
IIIT-D Yes Yes 4605 106

KinectFaceDB Yes Yes 936 52
BU-3DFE No Yes 2500 100

Data Scale, Collection Methods,

3.2 Evaluation Metrics
There are various evaluation standards for facial recogni-
tion accuracy. Accuracy (Acc) is often used as an evalua-
tion metric for facial recognition. It is defined as:
Data Scale, Collection Methods,

3.2 Evaluation Metrics
There are various evaluation standards for facial recogni-
tion accuracy. Accuracy (Acc) is often used as an evalua-
tion metric for facial recognition. It is defined as:

	 Acc =
TA TR FA FR+ + +

TA TR+ � (1)

Where TA and TR represent the true accept and true reject 
instances, respectively, while FA and FR represent false 
accept and false reject instances. Its specific meaning is 
the proportion of correct facial pairs out of all tested facial 
pairs. However, due to the extreme imbalance of facial 
pairs in practice, Acc is rarely directly used to evaluate the 
accuracy of facial recognition models.
The F1 score is the harmonic mean of precision (P) and 
recall (R), which can also effectively assess the accuracy 
of facial recognition models. The definitions of precision 
and recall are as follows:

	 P =
TP FP

TP
+

� (2)

	�  (3)

Where TP, FP, TN, and FN represent true positives, false 
positives, true negatives, and false negatives, respectively.
Moreover, the ROC curve is often used to evaluate the 
performance of algorithms. The higher the slope of the 
ROC curve, the higher the classification accuracy the 
model can achieve in case of misjudgment. The Area 
Under the Curve (AUC) represents a comprehensive 
indicator of classifier performance; generally, the larger 
the AUC value, the better the classifier’s performance. 
Because AUC demonstrates the robustness of classifier 
performance at different thresholds, it is widely used in 
the evaluation of classification models in computer vision. 
The ROC is constructed as follows: We define the False 
Positive Rate (FPR) and True Positive Rate (TPR) as fol-
lows:

	 TPR =
TP FN

TP
+

� (4)

	 FPR =
FP TN

FP
+

� (5)

Where TA and TR represent the true accept and true reject 
instances, respectively, while FA and FR represent false 
accept and false reject instances. Its specific meaning is 
the proportion of correct facial pairs out of all tested facial 
pairs. However, due to the extreme imbalance of facial 
pairs in practice, Acc is rarely directly used to evaluate the 
accuracy of facial recognition models.
Based on the algorithm’s output results and the true labels, 
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a set of FPR and TPR values under different classification 
thresholds can be obtained. Plotting FPR on the x-axis and 
TPR on the y-axis through a series of points approximates 
the ROC curve.

3.3 Results
Following are the methods that are commonly used with 
accuracy respectively:

Table 2:Results tested in common databases
Methods Database ACC Time of publication Regarding

MFEVIT
BU-FE3D 90.28

2021 [84]
Bosphorus 89.72

CCs
Bosphorus 98.68

2020 [67]
Texas3D 99.19

FFNet
BU-FE3D 89.82

2021 [69]
Bosphorus 87.65

MCFLNet
Lock3DFace 97.78

2023 [21]
IIIT-D 99.89

Uppal et al.
CurtinFaces 99.1

2020 [23]Lock3DFace 87.3
IIIT-D 99.7

DSNet
KinectFaceDB 96.3

2023 [26]
IIIT-D 81.29

Wardeberg et al.
FRGCv2 99.55

2021 [45]BU-FE3D 87.6
Bosphorus 86.0

AFNet-M
BU-FE3D 90.08

2023 [49]
Bosphorus 88.31

MLAT-PointNet+
FRGCv2 98.01

2022 [47]Bosphorus 99.78
BU-FE3D 100

Uppal et al.

Lock3DFace 87.3

2021 [73]
CurtinFaces 99.1

IIIT-D 99.7
KaspAROV 95.3

SpPCANet-1
Frav3D 96.93

2020 [71]Bosphorus 98.54
Casia3D 88.75

Chiu et al.
BU-FE3D 100

2023 [74]Texas3D 100
Bosphorus 100

LMFNet
KinectFaceDB 94.90

2023 [82]Bosphorus 93.03
Lock3DFace 88.01

SMM IIIT-D 99.61 2021 [81]

11



Dean&Francis

Methods Database ACC Time of publication Regarding

You et al.
Bosphorus 98.6

2020 [34]
Texas 98.6

Neto et al.
Bosphorus 93.54

2020 [35]
KinectFaceDB 96.1

Niu et al.
Lock3DFace 78.24

2023 [44]FRGCv2 83.39
Texas3D 84.25

PMMF
Lock3DFace 90.9

2023 [76]
IIIT-D 99.8

4. Conclusion and future work
This paper has summarized and analyzed various advanc-
es in the current advanced face recognition methods based 
on RGB-D data in a more comprehensive way, compared 
the performance of many of the important methods in-
volved on different datasets, and identified problems in 
the results, which can be used to point out the direction 
for the future development of face recognition.
Predictably, the current problems facing 3D RGB-D face 
recognition are as follows:
•	 1. Low-quality RGB-D data
At present, the collection of RGB-D data is greatly affect-
ed by various factors such as local hardware limitations, 
resolution, and noise level, so it is considered difficult to 
achieve large-scale, high-quality quantity collection, and 
there are fewer large-scale face databases in the public 
domain, which drastically limits the universality of model 
training. Different datasets handle data in different ways, 
making it more difficult to generalize across datasets.
•	 2. Interference from variable factors
In real-world conditions, various variables such as occlu-
sion, lighting, posture, and expression tend to bias face 
data. Although there are a large number of algorithms that 
deal with these variables in different ways to minimize 
their impact, a certain amount of information loss is un-
avoidable, and the size of the model algorithms also in-
creases, which is a major challenge for further improving 
the robustness and efficiency of face recognition.
•	 3.Difficulty in Multimodal fusion
In deep learning-based data processing, the depth map 
with the RGB map are often fused in different modalities, 
which can provide a lot of information that is difficult 
to obtain in a single modality and can also extract more 
detailed and specific features; however, it is inevitable to 
produce redundant information between different modali-
ties, and the algorithms can easily become more complex. 
In this case, a good and feasible fusion strategy can be 
designed to allow the computer to extract facial features 

quickly without wasting computational resources.
Overall, face recognition has made considerable and even 
remarkable achievements in many aspects. However, it 
still needs to be tested and explored in more aspects, and 
we expect that face recognition will overcome the current 
problems and become an indispensable part of society in 
the future.
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