
Dean&Francis

Research on UAV-assisted Vehicle networking task unloading strategy
based on multi-agent reinforcement learning

Fanjin Zeng

Central South University, Changsha, Hunan 410083, China
Email: fanjin1690@gmail.com

Abstract:
With the development of technology, in order to improve the user’s driving experience and driving safety, there are
more and more vehicle tasks with high delay requirements. Therefore, lots of researchers have paid attention to task
offloading scheduling.However, as vehicle tasks become increasingly complex, a single task may consist of multiple
subtasks with dependencies between them.The complex data dependencies within them make it more and more difficult
to design appropriate task offloading strategies. Considering that this problem is closely related to the scenarios and
requirements in the real world, this study focuses on the design of task offloading decisions in the scenario of UAV-
assisted vehicle network, in which MEC servers are installed in the macro base station and UAV to provide computing
resources for vehicles. We designed a task offloading strategy based on MATD3 algorithm to deal with this problem.
Following simulation trials, it is evident that our approach offers notable benefits in terms of both delay and energy
usage.
Keywords: Vehicle network, Multi-access edge computing, UAV, MATD3, Dependent load tasks

1. Introduction
With the yearning for a higher quality of life, the Internet
of vehicles has attracted more and more attention.It plays
a crucial role in building an intelligent transportation ser-
vice system, improving the driving experience of users,
and making driving safer. However, due to the limited
computing resources of the vehicle itself, it is difficult
to meet the computing requirements and low delay re-
quirements of various computing-intensive vehicle tasks.
And due to the distance limitation, there is often a huge
communication delay between the vehicle and the cloud
server. The application of MEC technology in the Internet
of vehicles effectively solves this problem. By installing
MEC servers on the macro base station, computing re-
sources are provided for vehicles.However, The number
of computing resources is usually pre-set in each macro
base station. When some social events lead to a surge in
traffic, it is difficult to meet the low delay requirements of
all vehicle tasks only by the macro base station. In other
cases, when the vehicle is far from the base station, the
base station can also not meet the low delay requirements
of the task.One way to solve the above problems is to use
UAVs to assist the macro base station in task processing.
The problems can be effectively solved by installing MEC
servers on UAVs and scheduling them to a designated lo-

cation to assist macro base station in completing comput-
ing tasks.
Currently, extensive research has been conducted by pre-
decessors on the task offloading strategy in IoV scenarios.
Zhang et al. [1]designed an iterative algorithm to reduce
the delay of task processing as much as possible. For
the vehicle edge computing and network of autonomous
driving, Zhao et al.[2]design a multi-hop task offloading
scheme on the premise of considering the mobility of the
vehicle,which fully considers the mobility of the vehicle
and timely offloads tasks to meet the real-time computing
requirements of autonomous driving.Yang et al[3] mainly
focus on the high speed of vehicles and the frequent con-
nection/disconnection between vehicles. They proposed a
new, efficient, and mobility-aware task offloading scheme,
taking into account the mobility of vehicles. Xue et al.
[3] proposed a joint computing offloading and content
caching strategy for the vehicle edge computing scenario
of unmanned vehicles. The study showed that this strat-
egy can effectively improve computing performance and
save energy.[4] considered the use of cloud-side collab-
oration to handle vehicle-mounted tasks with low delay
requirements. At the same time, MEC servers and cloud
servers were used to provide computing resources for ve-
hicle-mounted tasks. Li et al. [6] proposed a multi-stage
distributed task offloading strategy. Their method first se-

ISSN 2959-6157�

1

Dean&Francis

lects the offloading vehicle through the candidate vehicle
selection mechanism and then performs task offloading,
thus effectively improving the efficiency of task offload-
ing. Zeng et al. [7] used particle swarm optimization to
design task offloading strategy in IoV.
In this study, the DAG task scheduling, low delay, low
energy consumption and other issues in the UAV-assisted
vehicles network are expressed as an optimization prob-
lem. The problem is NP-hard and cannot be solved in
polynomial time. However, the traditional algorithms are
difficult to achieve the optimal solution and lack general-
ization. Therefore, this study intends to design a distribut-
ed cooperation scheme based on multi-agent RL method
to solve this problem.

2. System Model
In this section, we first introduce the scenario architecture
of UAV-assisted vehicle network, and then introduce the
computing resource model and energy consumption model
of MEC system, and formulate the corresponding optimi-
zation problems.

2.1 System Overview
Consider a UAV-assisted vehicle network, in which MEC
servers are deployed on multiple macro base stations and
UAVs to support delay-sensitive vehicle applications.
Each MEC server stores a service cache to support a spe-
cific task. The road infrastructure is divided into different
road segments, and each UAV runs at a consistent speed
within its designated road segment without overlap with
other UAVs. Each vehicle task can be further decomposed
into multiple subtasks, and there are dependencies be-
tween each subtask. Vehicles can offload their computing
tasks to macro base stations or UAVs within communica-
tion range. In addition, vehicles located in the overlap area
between macro base stations and UAVs can only offload
their tasks to one of the MEC servers.

2.2 Computation Model
Assuming that a vehicle-borne task is randomly generat-
ed by the vehicle, the computing task is represented by
a DGA G V E= (,) . Each subtask of the vehicle-borne

task consists of three components { qdi , qci , qti }, where

qdi represents the amount of data that subtask vi needs

to transmit, qci represents the number of CPU cycles

needed for finishing the subtask, and qti represents the
maximum acceptable processing time for the subtask.
M M M M= { 1 2， ，, S} denotes the set of macro base

stations, while U U U U= { 1 2， ，, S} represents the set of
UAVs .
To ensure that vehicles in the communication range of
multiple macro base stations and multiple UAVs can only
offload their tasks to one of the MEC servers, we let the
binary variables bim j

 and biu j
 be the vehicle-macro base

station and vehicle-UAV association modes, respectively.
If the vehicle unloads the subtask vi to the macro base

station mj (UAV u j), then bim j
=1 (biu j

=1) otherwise

bim j
= 0 (biu j

= 0). Therefore, there is a constraint condi-
tion when the vehicle unloads the task to the macro base
station:

	
m M u U
∑ ∑

j j∈ ∈

b b i Vim iuj j
+ = ∀ ∈1, � (1)

Now consider the computing resource model. Due to the
higher transmitting power of the macro base station and
the UAV compared to that of the vehicle and the relatively
small data volume of processing results for each task, we
will ignore the time consumption for descending process-
ing results to each vehicle. We use Rc to represent the
rate at which data are transferred between the vehicle and
the MEC server. Then Rc can be expressed as:

	 R s logc c= +2
 
 
 
1 P

σ
c cθ

2 � (2)

The MEC server allocates bandwidth to the vehicle with
sc , while Pc represents the vehicle’s transmitting power

and θc represents the channel gain between the vehicle
and the MEC server. The CPU main frequency of MEC
server installed on the macro base station is denoted as fm

, and fu represents the CPU main frequency of the MEC

server on the UAV. The earliest start time of subtask vi on
the MEC server is defined as follows:

	 EST v max T m b T u b max AFT v(i avail j im avail j iu j) = + +  

  
  

m M u U
∑ ∑

j j∈ ∈
() j j() ,

v Pred vj i∈ ()

 

 
() q

R
di

c
� (3)

where Tavail represents the earliest time when a MEC

serve is in idle state. AFT v(j) is the actual completion
time of v j . q

R
di

c
represents the time required to transfer the

2

Dean&Francis

task data from the vehicle to the MEC server. For finish-
ing the subtask vi ,The MEC server must have adequate
computing resources and all predecessor tasks must be
completed before the subtask vi can be executed.Then the

earliest completion time of subtask vi can be defined as:

	 EFT v EST v b b(i i im iu) = + +()
m M u U
∑ ∑

j j∈ ∈

q q
f f
ci ci

m u
j j

� (4)

This creates a constraint condition for the execution of the
subtask:
	 EFT v q(i ti)≤ � (5)

2.3 Energy Consumption Model
The system energy consumption can be divided into three
parts: vehicle energy consumption, UAV energy con-
sumption and macro base station energy consumption.
Due to the limitation of battery capacity, the UAV energy
consumption has an upper bound, denoted as Umax .Since
we are concerned with the energy consumption in the
process of the system’s overall task processing, we ignore
the energy consumption generated by vehicle movement.
The same is true for the UAV energy consumption. There-
fore, for task vi , the energy consumption generated by the
transmission is:

	 Etran
vi =

q Pdi c

R
⋅

c
� (6)

and the energy consumed by completing vi is:

	 E b f q b f qm im m ci m iu u ci u
vi = +

m M u U
∑ ∑

j j∈ ∈
j j

ξ ξ � (7)

where ξ is the effective capacitance parameter related to
the CPU microarchitecture, and f is the main frequency
of the CPU. The average energy consumption of running a
CPU cycle is ξ ⋅ f .
2.4 Problem Formulation
We present an optimization problem aimed at minimizing
the delay and energy consumption, while still adhering
to the previously established constraints. For the multi-

agent problem, one solution is to set up a total central
controller, each server sends its own information to the
central controller, which will lead to extra time and energy
consumption. Therefore, we propose a distributed solution
to let each macro base station and UAV make decisions
independently. Based on the model proposed in the last
section, the optimization problem of the macro base sta-
tion and UAV can be described as:

	 min AFT v Eα α(V) + −(1)∑
i V∈

vi
� (8)

	 s t b f q U u U. .











∑
i V∈

iu u ci u max jj
 
 
 

E E E

ξ

v tran mi
= +

+ ≤ ∈

(1 7

q P

)
di c

v v

(

R
i i

⋅

c

)

� (9)

3 . MATD3-BASED RESOURCE
MANAGEMENT SCHEME
Due to the NP-hard nature of the optimization problem
discussed in the previous section, it cannot be solved in
polynomial time. Traditional algorithms often struggle to
find optimal solutions and lack generality, making it chal-
lenging to quickly solve these optimization problems us-
ing traditional methods. Therefore, We use reinforcement
learning algorithms to deal with this problem.

3.1 Subtask priority
The first part of the algorithm aims to determine the pri-
ority of each subtask. Only by determining the priority
of each subtask can we establish the execution order of
each subtask, in order to make better decisions about task
offloading later. Inspired by literature [13], in our scheme,
we use a recursive approach to determine the priority of
each subtask. Specifically, we first reverse all edges in
the DAG () ()v v v vi j j i， ，→ . When succ v(i) = ∅ , we
define PV(vi) = 0 .Because we start from the sink subtask,
and the priority of the sink subtask is set to 0. Then we
recursively calculate the priority one by one. The specific
formula is as follows:

	 PV max PV i V(vi) = + + + ∀ ∈
v succ vj i∈ ()

  
 
  

(v j) U M f f R+
1  

 
 
 u U m M
∑ ∑

j j∈ ∈

q q q

u m c

ci ci di

j j

� (10)

3.2 Problem Transformation
In this section, we will convert the previously defined
problem into a Markov game with partial observability,
involving U M+ agents (comprising of M macro base
stations and U UAVs). Next, we will explain the four
elements of environmental state, observation, action and

reward in detail.
1）Environmental state: The system environment state
mainly includes vehicle position information and the po-
sition information of each MEC server, among which the
altitude of the UAV’s position should also be considered.
The specific environment state is as follows:

3

Dean&Francis

	

s x x x x x x x x x x x x=

x x x y y y y y y y y y

{ , , , , , , , , , , , , , , , ,

u u u u u u m m m u u u1 2 1 2 1 2 1 2

y y y y y y z z z x x x

, , , , , , , , , , , , , , , ,
u u u m m m u u u m m m

m m m u u u u u u S

1 2 1 2 1 2 1 2

1 2 1 2 1 2

   

y y y q q q q q

, , , , , , , , , , , , , ,

   

   

1 2 1 1 1, , , , , , , , , ,

U U M U

U M U M

  
M U U

S d ds c cs t , , }

1 2

qts

� (11)

where xi and yi represent the x coordinate and y co-

ordinate of vehicle i , xui
, yui

 and zui
 represent the x

coordinate, y coordinate and z coordinate of UAV i re-

spectively, and xmi
and ymi

 represent the x coordinate and

y coordinate of macro base station i .
2）Observation: we set that there is no information ex-
change between MEC servers, so the observed value can
be described as:

	


o x x x y y y x y z q q q q q q

o x x x y y y x y q q q q q q

u u u j u u u j u u u u d dj c cj t tj

m m m j m m m j m m m d dj c cj t tj

i i i i i i i i i i

i i i i i i i i i

=

=

{ , , , , , , , , , , , , , , , , , , , }

{ , , , , , , , , , , , , , , , , , , }

1, 2, , 1, 2, , 1 1 1

1, 2, , 1, 2, , 1 1 1

    

    
� (12)

where x j m, i
(x j u, i

)and y j m, i
(y j u, i

) respectively represent

the x coordinates and y coordinates of vehicle j within

the communication range of the corresponding macro base
station mi (UAV ui) .
3）Action: the action of each agent is obtained by the
agent selecting an action from its action space according
to its policy function and observation value. The action
value can be described as:

	





a b b b i Mm m m sm

a b b b U
i i i i

u u u sui i i i

= ∀ ∈

= ∀∈

{
{

1 2

1 2

, , ,

, , ,





}
}

� (13)

The binary variables bjui
and bjmi

respectively represent

whether vehicle j offloads the task to macro base station

mi or UAV ui ,while bi m t, 0,1()∈{ }， bi j t, 0,1()∈{ } .
4）Reward: As rewards guide each agent in selecting their
optimal strategies which directly influences task offload-
ing strategies for corresponding MEC servers, it under-
scores their critical importance throughout our algorithm.
In the reward setting, we will give all agents the same
reward every time.

3.3 MATD3-Based Solution
In order to tackle the multi-agent Markov game problem
mentioned above, the MATD3 algorithm integrates the
TD3 algorithm with a collaborative learning architecture
for multiple agents. Next, we are going to introduce our
proposed scheme based on MATD3.
1）TD3 algorithm:TD3 algorithm is a refined version of
the DDPG algorithm. TD3 algorithm primarily addresses
the issue of overestimating value estimates. When max-
imizing Q values with noise, the estimate function tends
to continuously overestimate Q values. This can lead to
inaccuracies in the estimate function as it learns to ap-
proximate the true value due to the presence of noise.

Since these methods are based on the Behrman equation,
updating the estimate function using subsequent states
exacerbates this decline in accuracy. As a result, using
an inaccurate estimate at each policy update can lead to
accumulated errors and ultimately prevent convergence of
the algorithm. Therefore, TD3 improves upon DDPG by
incorporating ideas from Double DQN and implementing
delayed learning and soft update methods for network
parameter updates. Additionally, TD3 utilizes both explo-
ration noise and policy noise during parameter updates for
smoother policy expectations.
2）System Framework:Our MATD3 framework consists
of a vehicle environment and agents, each utilizing the
TD3 algorithm.During centralized offline training, agents
have access to additional information observed by other
agents, including their observations and actions. When
updating parameters for both actor and critic, the actor
selects an action based on its own policy function and lo-
cal observation, which is then evaluated by the critic. In
the training stage, since the information of all agents will
be included in the environment state, the entire system
environment is static for each agent. Since the participants
are trained to select the best action from the action space
only by their own local observation in the MATD3 algo-
rithm, each agent can independently select the best action
according to their own unique task offloading strategy and
their own observation value in the execution stage. At the
same time, since we set it in a multi-intelligence coopera-
tion scenario, all MEC servers in the system work need to
together to minimize the time of task completion and the
energy consumed in the whole process as much as possi-
ble.

4. SIMULATION RESULTS AND
ANALYSIS
In this section, we mainly compare the proposed scheme
with the existing methods.We compares our method with

4

Dean&Francis

the DAGOA algorithm [16] and the TBTOA algorithm
[12].
 Figure 1 shows the delay and energy consumption under
the three schemes with different number of subtasks. It is
evident that the scheme we proposed has clear advantages
in achieving lower average delay compared to the other
two algorithms. Although the gap in energy consumption
is small, the algorithm we proposed still performs the
best. Fig. 1 respectively shows the average delay of the
three algorithms under different service caching ratios and
DAG task density. As shown in Fig. 1, with the increase
of service caching ratio, the delay of all schemes decreas-
es. This is because as the service cache ratio increases, all
tasks have more offloading options.This reduces the num-

ber of cases in which a MEC server is idle but there is no
corresponding service cache on the MEC server, causing
the task to fail to offload. It can also be seen from Fig. 1
that, regardless of the service caching ratio, our proposed
algorithm has an advantage in terms of low delay com-
pared with the other two algorithms. Different from the
service caching ratio, with the increase of DAG task den-
sity, the delay of the system will be higher. Because the
increase of density represents that subtasks will have more
dependencies, resulting in more subtasks being blocked in
offloading. It can also be seen from Fig.1 that our scheme
is better than the other two schemes regardless of the den-
sity.

Figure.1 the delay and energy consumption of the three algorithms under different conditions

5. Conclusion
This study studies the task offloading strategy in the sce-
nario of UAV-assisted vehicle network. We particularly
focus on the task offloading problem in the context of
service cache constraints.We formulate the corresponding
optimization goal for this problem, which is to minimize
the overall delay and energy consumption of the vehicle
task by designing an appropriate task offloading strategy.
This problem is NP-hard. Therefore, we design a solution
by using MATD3 algorithm, and verify the effectiveness
of our scheme through experiments. The experimental
results show that our scheme is better than the existing

schemes in reducing delay and energy consumption.

References
[1] K. Zhang et al., “Energy-efficient offloading for mobile edge
computing in 5G heterogeneous networks”, IEEE Access, vol. 4,
pp. 5896-5907, 2016.
[2] Liu L, Zhao M, Yu M, et al. Mobility-aware multi-hop task
offloading for autonomous driving in vehicular edge computing
and networks[J]. IEEE Transactions on Intelligent Transportation
Systems, 2022, 24(2): 2169-2182.
[3] Yang C, Liu Y, Chen X, et al. Efficient mobility-aware task
offloading for vehicular edge computing networks[J]. IEEE
Access, 2019, 7: 26652-26664.

5

Dean&Francis

[4] J. Huang, J. Wan, B. Lv, Q. Ye and Y. Chen, “Joint
computation offloading and resource allocation for edge-cloud
collaboration in Internet of Vehicles via deep reinforcement
learning”, IEEE Syst. J., vol. 17, no. 2, pp. 2500-2511, Jun.
2023.
[5] S. Zhou, W. Jadoon and I. A. Khan, “Computing offloading
strategy in mobile edge computing environment: A comparison
between adopted frameworks challenges and future directions”,
Electronics, vol. 12, no. 11, pp. 2452, 2023.
[6] C. Li, C. Qianqian and Y. Luo, “Low-latency edge
cooperation caching based on base station cooperation in SDN
based MEC”, Expert Syst. Appl., vol. 191, pp. 1-14, Apr. 2022.
[7] G. Li, M. Zeng, D. Mishra, L. Hao, Z. Ma and O. A. Dobre,
“Latency minimization for IRS-aided NOMA MEC systems with
WPT-enabled IoT devices”, IEEE Internet Things J., vol. 10, no.
14, pp. 12156-12168, Jul. 2023.
[8] Y. Han, Z. Zhao, J. Mo, C. Shu, and G. Min, “Efficient task
offloading with dependency guarantees in ultra-dense edge
networks,” in 2019 IEEE Global Commu-nications Conference
(GLOBECOM), 2019, pp. 1–6.
[9] X. Fu, B. Tang, F. Guo, and L. Kang, “Priority and
dependency-based dag tasks offloading in fog/edge collaborative
environment, ” in 2021 IEEE 24th International Conference on
Computer Supported Cooperative Work in Design (CSCWD),
2021, pp. 440– 445
[10] S. Sundar and B. Liang, “Offloading dependent tasks with

communication delay and deadline constraint”, Proc. IEEE
Conf. Comput. Commun., pp. 37-45, 2018.
[11] G. Zhao, H. Xu, Y. Zhao, C. Qiao and L. Huang, “Offloading
dependent tasks in mobile edge computing with service
caching”, Proc. IEEE Conf. Comput. Commun., pp. 1997-2006,
2020.
[12] Lv X, Du H, Ye Q. TBTOA: A DAG-Based Task Offloading
Scheme for Mobile Edge Computing[C]//ICC 2022-IEEE
International Conference on Communications. IEEE, 2022:
4607-4612.
[13] Y. Sahni, J. Cao, L. Yang and Y. Ji, “Multihop offloading
of multiple DAG tasks in collaborative edge computing”, IEEE
Internet Things J., vol. 8, no. 6, pp. 4893-4905, Mar. 2021.
[14] Wang Z, Sun G, Su H, et al. Low-latency scheduling
approach for dependent tasks in MEC-enabled 5G vehicular
networks[J]. IEEE Internet of Things Journal, 2023.
[15] Peng H, Shen X. Multi-agent reinforcement learning
based resource management in MEC-and UAV-assisted
vehicular networks[J]. IEEE Journal on Selected Areas in
Communications, 2020, 39(1): 131-141.
[16] Han Y, Zhao Z, Mo J, et al. Efficient task offloading with
dependency guarantees in ultra-dense edge networks[C]//2019
IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019: 1-6.

6

