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Abstract:
With the development of technology, in order to improve the user’s driving experience and driving safety, there are 
more and more vehicle tasks with high delay requirements.  Therefore, lots of researchers have paid attention to task 
offloading scheduling.However, as vehicle tasks become increasingly complex, a single task may consist of multiple 
subtasks with dependencies between them.The complex data dependencies within them make it more and more difficult 
to design appropriate task offloading strategies. Considering that this problem is closely related to the scenarios and 
requirements in the real world, this study focuses on the design of task offloading decisions in the scenario of UAV-
assisted vehicle network, in which MEC servers are installed in the macro base station and UAV to provide computing 
resources for vehicles. We designed a task offloading strategy based on MATD3 algorithm to deal with this problem. 
Following simulation trials, it is evident that our approach offers notable benefits in terms of both delay and energy 
usage.
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1. Introduction
With the yearning for a higher quality of life, the Internet 
of vehicles has attracted more and more attention.It plays 
a crucial role in building an intelligent transportation ser-
vice system, improving the driving experience of users, 
and making driving safer. However, due to the limited 
computing resources of the vehicle itself, it is difficult 
to meet the computing requirements and low delay re-
quirements of various computing-intensive vehicle tasks. 
And due to the distance limitation, there is often a huge 
communication delay between the vehicle and the cloud 
server. The application of MEC technology in the Internet 
of vehicles effectively solves this problem. By installing 
MEC servers on the macro base station, computing re-
sources are provided for vehicles.However, The number 
of computing resources is usually pre-set in each macro 
base station. When some social events lead to a surge in 
traffic, it is difficult to meet the low delay requirements of 
all vehicle tasks only by the macro base station. In other 
cases, when the vehicle is far from the base station,  the 
base station can also not meet the low delay requirements 
of the task.One way to solve the above problems is to use 
UAVs to assist the macro base station in task processing.
The problems can be effectively solved by installing MEC 
servers on UAVs and scheduling them to a designated lo-

cation to assist macro base station in completing comput-
ing tasks.
Currently, extensive research has been conducted by pre-
decessors on the task offloading strategy in IoV scenarios. 
Zhang et al. [1]designed an iterative algorithm to reduce 
the delay of task processing as much as possible. For 
the vehicle edge computing and network of autonomous 
driving, Zhao et al.[2]design a multi-hop task offloading 
scheme on the premise of considering the mobility of the 
vehicle,which fully considers the mobility of the vehicle 
and timely offloads tasks to meet the real-time computing 
requirements of autonomous driving.Yang et al[3] mainly 
focus on the high speed of vehicles and the frequent con-
nection/disconnection between vehicles. They proposed a 
new, efficient, and mobility-aware task offloading scheme, 
taking into account the mobility of vehicles. Xue et al. 
[3] proposed a joint computing offloading and content 
caching strategy for the vehicle edge computing scenario 
of unmanned vehicles. The study showed that this strat-
egy can effectively improve computing performance and 
save energy.[4] considered the use of cloud-side collab-
oration to handle vehicle-mounted tasks with low delay 
requirements. At the same time, MEC servers and cloud 
servers were used to provide computing resources for ve-
hicle-mounted tasks. Li et al. [6] proposed a multi-stage 
distributed task offloading strategy. Their method first se-
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lects the offloading vehicle through the candidate vehicle 
selection mechanism and then performs task offloading, 
thus effectively improving the efficiency of task offload-
ing. Zeng et al. [7] used particle swarm optimization to 
design task offloading strategy in IoV.
In this study, the DAG task scheduling, low delay, low 
energy consumption and other issues in the UAV-assisted 
vehicles network are expressed as an optimization prob-
lem. The problem is NP-hard and cannot be solved in 
polynomial time. However, the traditional algorithms are  
difficult to achieve the optimal solution and lack general-
ization. Therefore, this study intends to design a distribut-
ed cooperation scheme based on multi-agent RL method 
to solve this problem.

2. System Model
In this section, we first introduce the scenario architecture 
of UAV-assisted vehicle network, and then introduce the 
computing resource model and energy consumption model 
of MEC system, and formulate the corresponding optimi-
zation problems.

2.1 System Overview
Consider a UAV-assisted vehicle network, in which MEC 
servers are deployed on multiple macro base stations and 
UAVs to support delay-sensitive vehicle applications. 
Each MEC server stores a service cache to support a spe-
cific task. The road infrastructure is divided into different 
road segments, and each UAV runs at a consistent speed 
within its designated road segment without overlap with 
other UAVs. Each vehicle task can be further decomposed 
into multiple subtasks, and there are dependencies be-
tween each subtask. Vehicles can offload their computing 
tasks to macro base stations or UAVs within communica-
tion range. In addition, vehicles located in the overlap area 
between macro base stations and UAVs can only offload 
their tasks to one of the MEC servers.

2.2 Computation Model
Assuming that a vehicle-borne task is randomly generat-
ed by the vehicle, the computing task is represented by 
a DGA G V E= ( , ) . Each subtask of the vehicle-borne 

task consists of three components { qdi , qci , qti }, where 

qdi  represents the amount of data that subtask vi  needs 

to transmit, qci  represents the number of CPU cycles 

needed for finishing the subtask, and  qti  represents the 
maximum acceptable processing time for the subtask. 
M M M M= { 1 2， ，, S}  denotes the set of macro base 

stations, while U U U U= { 1 2， ，, S} represents the set of 
UAVs .
To ensure that vehicles in the communication range of 
multiple macro base stations and multiple UAVs can only 
offload their tasks to one of the MEC servers, we let the 
binary variables bim j

 and biu j
 be the vehicle-macro base 

station and vehicle-UAV association modes, respectively. 
If the vehicle unloads the subtask vi  to the macro base 

station mj (UAV u j ), then bim j
=1 ( biu j

=1 ) otherwise 

bim j
= 0 ( biu j

= 0 ). Therefore, there is a constraint condi-
tion when the vehicle unloads the task to the macro base 
station:

	
m M u U
∑ ∑

j j∈ ∈

b b i Vim iuj j
+ = ∀ ∈1, � (1)

Now consider the computing resource model. Due to the 
higher transmitting power of the macro base station and 
the UAV compared to that of the vehicle and the relatively 
small data volume of processing results for each task, we 
will ignore the time consumption for descending process-
ing results to each vehicle. We use  Rc  to represent the 
rate at which data are transferred between the vehicle and 
the MEC server. Then Rc  can be expressed as:

	 R s logc c= +2
 
 
 
1 P

σ
c cθ

2 � (2)

The MEC server allocates bandwidth to the vehicle with  
sc , while Pc  represents the vehicle’s transmitting power 

and θc  represents the channel gain between the vehicle 
and the MEC server. The CPU main frequency of  MEC 
server installed on the macro base station is denoted as fm

, and  fu  represents the CPU main frequency of the MEC 

server on the UAV. The earliest start time of subtask vi  on 
the MEC server is defined as follows:

	 EST v max T m b T u b max AFT v( i avail j im avail j iu j) = + +  

  
  

m M u U
∑ ∑

j j∈ ∈
( ) j j( ) ,

v Pred vj i∈ ( )

 

 
( ) q

R
di

c
� (3)

where Tavail  represents the earliest time when a MEC 

serve is in idle state. AFT v( j ) is the actual completion 
time of v j . q

R
di

c
represents the time required to transfer the 
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task data from the vehicle to the MEC server. For finish-
ing the subtask vi ,The MEC server must have adequate 
computing resources and all predecessor tasks must be 
completed before the subtask vi  can be executed.Then the 

earliest completion time of subtask vi  can be defined as:

	 EFT v EST v b b( i i im iu) = + +( )
m M u U
∑ ∑

j j∈ ∈

q q
f f
ci ci

m u
j j

� (4)

This creates a constraint condition for the execution of the 
subtask:
	 EFT v q( i ti)≤ � (5)

2.3 Energy Consumption Model
The system energy consumption can be divided into three 
parts: vehicle energy consumption, UAV energy con-
sumption and macro base station energy consumption.
Due to the limitation of battery capacity, the UAV energy 
consumption has an upper bound, denoted as Umax .Since 
we are concerned with the energy consumption in the 
process of the system’s overall task processing, we ignore 
the energy consumption generated by vehicle movement.
The same is true for the UAV energy consumption. There-
fore, for task vi , the energy consumption generated by the 
transmission is:

	 Etran
vi =

q Pdi c

R
⋅

c
� (6)

and the energy consumed by completing vi  is:

	 E b f q b f qm im m ci m iu u ci u
vi = +

m M u U
∑ ∑

j j∈ ∈
j j

ξ ξ � (7)

where ξ  is the effective capacitance parameter related to 
the CPU microarchitecture, and f  is the main frequency 
of the CPU. The average energy consumption of running a 
CPU cycle is  ξ ⋅ f .
2.4 Problem Formulation
We present an optimization problem aimed at minimizing 
the delay and energy consumption, while still adhering 
to the previously established constraints.  For the multi-

agent problem, one solution is to set up a total central 
controller, each server sends its own information to the 
central controller, which will lead to extra time and energy 
consumption. Therefore, we propose a distributed solution 
to let each macro base station and UAV make decisions 
independently. Based on the model proposed in the last 
section, the optimization problem of the macro base sta-
tion and UAV can be described as:

	 min AFT v Eα α( V ) + −(1 )∑
i V∈

vi
� (8)

	 s t b f q U u U. .
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
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(

R
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⋅
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)

� (9)

3 .  MATD3-BASED RESOURCE 
MANAGEMENT SCHEME
Due to the NP-hard nature of the optimization problem 
discussed in the previous section, it cannot be solved in 
polynomial time. Traditional algorithms often struggle to 
find optimal solutions and lack generality, making it chal-
lenging to quickly solve these optimization problems us-
ing traditional methods.   Therefore, We use reinforcement 
learning algorithms to deal with this problem.

3.1 Subtask priority
The first part of the algorithm aims to determine the pri-
ority of each subtask.  Only by determining the priority 
of each subtask can we establish the execution order of 
each subtask, in order to make better decisions about task 
offloading later. Inspired by literature [13], in our scheme, 
we use a recursive approach to determine the priority of 
each subtask.  Specifically,  we first reverse all edges in 
the DAG ( ) ( )v v v vi j j i， ，→ . When succ v( i ) = ∅ , we 
define PV(vi ) = 0 .Because we start from the sink subtask, 
and the priority of the sink subtask is set to 0. Then we 
recursively calculate the priority one by one. The specific 
formula is as follows:

	 PV max PV i V(vi ) = + + + ∀ ∈
v succ vj i∈ ( )

  
 
  

(v j ) U M f f R+
1  

 
 
 u U m M
∑ ∑

j j∈ ∈

q q q

u m c

ci ci di

j j

� (10)

3.2 Problem Transformation
In this section, we will convert the previously defined 
problem into a Markov game with partial observability, 
involving U M+  agents (comprising of M  macro base 
stations and U  UAVs). Next, we will explain the four 
elements of environmental state, observation, action and 

reward in detail.
1）Environmental state: The system environment state 
mainly includes vehicle position information and the po-
sition information of each MEC server, among which the 
altitude of the UAV’s position should also be considered.
The specific environment state is as follows:
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where xi  and yi  represent the x  coordinate and y  co-

ordinate of vehicle i , xui
, yui

 and zui
 represent the x  

coordinate, y coordinate and z  coordinate of UAV i re-

spectively, and xmi
and ymi

 represent the x coordinate and 

y coordinate of macro base station i .
2）Observation: we set that there is no information ex-
change between MEC servers, so the observed value can 
be described as:

	


o x x x y y y x y z q q q q q q

o x x x y y y x y q q q q q q

u u u j u u u j u u u u d dj c cj t tj

m m m j m m m j m m m d dj c cj t tj

i i i i i i i i i i

i i i i i i i i i

=

=

{ , , , , , , , , , , , , , , , , , , , }

{ , , , , , , , , , , , , , , , , , , }

1, 2, , 1, 2, , 1 1 1

1, 2, , 1, 2, , 1 1 1

    

    
� (12)

where x j m, i
( x j u, i

)and y j m, i
( y j u, i

) respectively represent 

the x coordinates and y  coordinates of vehicle j within 

the communication range of the corresponding macro base 
station mi (UAV ui ) .
3）Action: the action of each agent is obtained by the 
agent selecting an action from its action space according 
to its  policy function and  observation value. The action 
value  can be described as:

	





a b b b i Mm m m sm

a b b b U
i i i i

u u u sui i i i

= ∀ ∈

= ∀∈

{
{

1 2

1 2

, , ,

, , ,





}
}

� (13)

The binary variables bjui
and bjmi

respectively represent 

whether vehicle j  offloads the task to macro base station 

mi  or UAV ui ,while bi m t, 0,1( )∈{ }， bi j t, 0,1( )∈{ } .
4）Reward: As rewards guide each agent in selecting their 
optimal strategies which directly influences task offload-
ing strategies for corresponding MEC servers, it under-
scores their critical importance throughout our algorithm.
In the reward setting, we will give all agents the same 
reward every time.

3.3 MATD3-Based Solution
In order to tackle the multi-agent Markov game problem 
mentioned above, the MATD3 algorithm integrates the 
TD3 algorithm with a collaborative learning architecture 
for multiple agents. Next, we are going to introduce our 
proposed scheme based on MATD3.
1）TD3 algorithm:TD3 algorithm is a refined version of 
the DDPG algorithm. TD3 algorithm primarily addresses 
the issue of overestimating value estimates. When max-
imizing Q values with noise, the estimate function tends 
to continuously overestimate Q values. This can lead to 
inaccuracies in the estimate function as it learns to ap-
proximate the true value due to the presence of noise. 

Since these methods are based on the Behrman equation, 
updating the estimate function using subsequent states 
exacerbates this decline in accuracy. As a result, using 
an inaccurate estimate at each policy update can lead to 
accumulated errors and ultimately prevent convergence of 
the algorithm. Therefore, TD3 improves upon DDPG by 
incorporating ideas from Double DQN and implementing 
delayed learning and soft update methods for network 
parameter updates. Additionally, TD3 utilizes both explo-
ration noise and policy noise during parameter updates for 
smoother policy expectations.
2）System  Framework:Our MATD3 framework consists 
of a vehicle environment and  agents, each utilizing the 
TD3 algorithm.During centralized offline training, agents 
have access to additional information observed by other 
agents, including their observations and actions. When 
updating parameters for both actor and critic, the actor 
selects an action based on its own policy function and lo-
cal observation, which is then evaluated by the critic.  In 
the training stage, since the information of all agents will 
be included in the environment state, the entire system 
environment is static for each agent. Since the participants 
are trained to select the best action from the action space 
only by their own local observation in the MATD3 algo-
rithm, each agent can independently select the best action 
according to their own unique task offloading strategy and 
their own observation value in the execution stage.  At the 
same time, since we set it in a multi-intelligence coopera-
tion scenario, all MEC servers in the system work need to 
together to minimize the time of task completion and the 
energy consumed in the whole process as much as possi-
ble.

4. SIMULATION RESULTS AND 
ANALYSIS
In this section, we mainly compare the proposed scheme 
with the existing methods.We compares our method with 
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the DAGOA algorithm [16] and the TBTOA algorithm 
[12].
 Figure 1 shows the delay and energy consumption under 
the three schemes with different number of subtasks. It is 
evident that the scheme we proposed has clear advantages 
in achieving lower average delay compared to the other 
two algorithms. Although the gap in energy consumption 
is small, the algorithm we proposed still performs the 
best. Fig. 1 respectively shows the average delay of the 
three algorithms under different service caching ratios and 
DAG task density. As shown in Fig. 1, with the increase 
of service caching ratio, the delay of all schemes decreas-
es. This is because as the service cache ratio increases, all 
tasks have more offloading options.This reduces the num-

ber of cases in which a MEC server is idle but there is no 
corresponding service cache on the MEC server, causing 
the task to fail to offload. It can also be seen from Fig. 1 
that, regardless of the service caching ratio, our proposed 
algorithm has an advantage in terms of low delay com-
pared with the other two algorithms. Different from the 
service caching ratio, with the increase of DAG task den-
sity, the delay of the system will be higher. Because the 
increase of density represents that subtasks will have more 
dependencies, resulting in more subtasks being blocked in 
offloading. It can also be seen from Fig.1 that our scheme 
is better than the other two schemes regardless of the den-
sity.

Figure.1  the delay and energy consumption of the three algorithms under different conditions

5. Conclusion
This study studies the task offloading strategy in the sce-
nario of UAV-assisted vehicle network. We particularly 
focus on the task offloading problem in the context of 
service cache constraints.We formulate the corresponding 
optimization goal for this problem, which is to minimize 
the overall delay and energy consumption of the vehicle 
task by designing an appropriate task offloading strategy. 
This problem is NP-hard. Therefore, we design a solution 
by using MATD3 algorithm, and verify the effectiveness 
of our scheme through experiments. The experimental 
results show that our scheme is better than the existing 

schemes in reducing delay and energy consumption.
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