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Abstract:
The aim of this study is to develop a neural network model of point-defect microcavities in two-dimensional GaAs 
dielectric background photonic crystals in order to accurately predict and optimize their optical properties. Point-defect 
microcavities are localized structures in photonic crystals with the ability to modulate optical modes and enhance 
light-matter interactions. However, existing methods are unable to fully capture their complexity and multiparametric 
properties. Therefore, present study propose to utilize a neural network model to quickly and accurately predict the 
optical properties of point-defect microcavities. With this model, present study can effectively address the challenges 
faced by conventional methods in design and optimization. The results of this study will promote the development 
of photonic devices and photonic integration technologies, and facilitate the application of photonics in the fields of 
information technology, communication, energy and biomedicine.
Keywords: photonic crystal, point defect microcavity, neural network model, optimization design

1. Introduction
A photonic crystal is a structure with a special material, 
proposed by John S. and Yablonovitch E. et al. in 1987. It 
has a “photonic frequency forbidden band”, i.e., a defect 
is introduced into a perfect photonic crystal. When the 
frequency of the electromagnetic wave coincides with 
the defect state, it may be localized at the defect location. 
Point-defect microcavities are localized structures in 
photonic crystals, which form locally modulated optical 
modes by introducing defects in the lattice. Currently, re-
searchers have studied the optical properties of point-de-
fect microcavities to some extent through theoretical 
simulations and experimental measurements. However, 
the relationship between the optical properties and struc-
tural parameters of point-defect microcavities is still not 
completely clear. Conventional methods often require ex-
tensive trial-and-error and optimization processes, which 
are time-consuming and not efficient enough. In addition, 
due to the structural complexity and multi-parameter 
characteristics of point-defect microcavities, traditional 
analytical methods are often unable to fully capture their 
optical behavior. Therefore, there is a need to find a new 
method to establish the optical model of point-defect mi-
crocavities to achieve accurate prediction of their optical 

properties and optimized design.

Figure 1 2D triangular lattice band defect 
structure photonic crystal

In 2019, by a team of scientists from McGill University in 
Canada, they successfully combined the optical properties 
of photonic crystals with the computational capabilities 
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of neural networks to realize a photonic crystal neural 
network chip. The photonic crystal neural network chip 
is based on the optical nonlinear properties of photonic 
crystals, and uses the transmission and control of light to 
realize the computational functions of neural networks. 
Since photonic crystal is a periodic optical material with 
a specific refractive index distribution, it can realize the 
waveguide and modulation of light, while neural network 
is a computational model that mimics the human nervous 
system, which is used to process complex data and per-
form pattern recognition. Combining photonic crystals 
with neural networks benefits to some extent from the 
optical properties of photonic crystals and the fast trans-
mission speed of light, as well as the computational and 
pattern recognition capabilities of neural networks. The 
combination of the two offers new possibilities for high-
speed and efficient optical computation. Compared to tra-
ditional optical simulation methods that rely on physical 
equations and numerical solution methods, the use of neu-
ral networks for learning patterns and features of data to 
achieve nonlinear mapping and prediction has the advan-
tages of simplicity, accuracy, efficiency and universality.
In this study, a neural network model was constructed for 
a two-dimensional GaAs dielectric background photonic 
crystal point-defect microcavity, and the model was used 
to achieve accurate prediction and analysis of photon 
modes and dispersion relations of the photonic crystal 
point-defect microcavity.

2 .  Mode l ing  a  photon ic  crys ta l 
point-defect microcavity with a two-di-
mensional GaAs dielectric background
First, present study selected a lattice size of 5x5 to ensure 
that the photonic crystal has sufficient size and periodicity. 
The lattice is defined by two basis vectors, and to meet 
the geometrical requirements of the structure during the 
construction of the photonic crystal, present study used 
GaAs as the default material and set its dielectric con-
stant to (epsilon) 12 to accurately characterize the optical 
properties of GaAs. In order to introduce point-defect 
microcavities, present study added cylindrical structures 
to the lattice. The material of these cylinders was chosen 
to be air (air) and its radius (r) is a variable parameter. 
Present study used a sequence of radii ranging from 0.01 
to 0.51 in steps of 0.01 to study the effect of different sizes 
of defective microcavities on the properties of photonic 
crystals. Such a design allows us to explore the optical 
response induced by defective microcavities of different 
sizes in photonic crystals.

Figure 2 Modeling of photonic crystal point-
defect microcavities on a 2D GaAs dielectric 

background

Figure 3 Photonic crystal with GaAs 
dielectric background
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3. Data acquisition

Figure 4 Sample photonic crystal point-defect microcavity structures with different radii and 
their corresponding partial photon modes and dispersion relations for a 2D GaAs dielectric 

background
(1) Iterative Addition of Cylinders: A loop iteration ap-
proach was employed to add cylinders with different radii 
to the list of geometries. Each iteration involved the addi-
tion of a cylinder with a specific radius, allowing for the 
exploration of different sizes of defective microcavities in 
the photonic crystal.
(2) Setting Simulation Parameters: The simulation param-
eters were carefully defined to ensure accurate calcula-
tions. This included specifying the resolution of the simu-
lation and determining the number of bands to consider in 
the analysis.
(3) Definition of Key Points: Two crucial points, namely 
the Γ-point (Gamma) and the K’-point (K’), were defined. 
These points serve as reference positions in the analysis of 
the photonic crystal’s energy band structure.
(4) Generation of K-Points: A series of K-points, totaling 
ten in number, were generated between the Γ-point and 
the K’-point. These K-points are strategically positioned 
to capture important characteristics of the photonic crys-
tal’s energy bands.
(5) Energy Band Calculation: The energy band structure 

of the photonic crystal was calculated using the energy 
band calculation method (run-te). This calculation in-
volved considering the defined geometries, simulation 
parameters, and the generated K-points. The resulting 
energy band structure provides valuable insights into the 
behavior of the photonic crystal.
(6) Recording of Radius Values: During the iteration 
process, the current value of the radius (r) was recorded 
for each iteration. This allowed for the generation of a 
sequence of radii ranging from 0.01 to 0.51 with a step 
size of 0.01. By systematically varying the radius, the in-
fluence of different sizes of defective microcavities on the 
properties of the photonic crystal could be examined.
In short present study build a photonic crystal point-defect 
microcavity model with a two-dimensional GaAs dielec-
tric background and explore the energy band structure of 
photonic crystals by cyclically adding cylindrical defects 
of different radii. By modifying the radius sequence and 
simulation parameters, sample data of the energy bands 
(dispersion relation ω-K) of photonic crystals can be ob-
tained for defects of different sizes.
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4. Designing, training neural network 
models

Figure 5 Model structure framework
(1) set/test set generation: sample data from the energy 
bands of photonic crystals are used and copied several 
times to increase the number of samples. The dataset is 
then divided into a training set and a test set.
(2) BP Neural Network Creation, Training and Simulation 
Testing:
a. Network Creation: create a new neural network ob-
ject using the selected neural network model (BP neural 
network). Set the size of the input layer to the number of 
features in the dataset, the size of the output layer to the 
number of target variables, and select the appropriate hid-
den layer size.
BP neural network creation:
a. A new neural network object was created using the 
newff (Feedforward Neural Network) function. The input 
parameters of this function include the input features of 
the training set (P_train) and the target output (T train), as 
well as a parameter indicating the structure of the hidden 
layer, which is 9 here.
b. Setting training parameters: set the training parameters 
of the neural network, including the number of iterations 
(epochs), the target error (goal) and the learning rate (lr). 
These parameters will affect the training process and re-
sults of the network.
c. Training the network: the neural network is trained us-
ing the input features and target output of the training set. 
During the training process, the neural network is adjusted 
to its internal weights and biases to minimize the error 
between the predicted output and the target output. The 
training process is iterated several times until a specified 
number of iterations or target error is reached.
d. Simulation test: the trained neural network is used to 
simulate the input features of the test set to get the predict-
ed target output. Here the variable T sim bp is the predic-

tion obtained by simulation test through neural network.
Performance evaluation: the performance of the model is 
evaluated based on the results of the simulation tests. Two 
performance evaluation metrics are used here:
a. Relative error (error_bp): the relative error between 
the predicted results and the target output of the test set 
is calculated. The relative error indicates the degree of 
difference between the predicted value and the true value, 
which is defined as the difference between the predicted 
value and the true value divided by the true value.
b. Coefficient of Determination (R2_bp): measures how 
well the model fits the test set data. The coefficient of 
determination indicates the degree of correlation between 
the predicted values and the true values, and its value 
ranges from 0 to 1, with closer to 1 indicating a better fit.

4 Evaluating neural network models

Figure 6 Neural network structure

Figure 7 Neural network algorithm

Figure 8 Neural network progress
From Figure 6 it is known that the size of the input layer 
of this neural network is 121 and the size of the hidden 
layer is 9. From Figure 7 it is known that the data division 
algorithm of this neural network is Random (dividerand), 
the training algorithm is Levenberg-Marquardt (trainlm) 
and the error algorithm is Mean Squared Error (mse). 
From Fig. 8 present study know that the number of itera-
tions is 4, the error (performance) is 2.91e-05, the gradient 
(Gradient) is 0.0168 and the Mu value is 1.00e-07.
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Figure 9 Comparative graphical 
representation

Figure 10 Error graphical representation
From the result Figure 9, it can be seen that the variance 
is only 0.99924, and the predicted values are well fitted to 
the true values.
Figure 10 shows the error plot (LOTS Performance): vi-
sualization of the error transformations during network 
training. best Validation Performance is 3.0759e-05.
Figure 11 shows the Training State: visualization of the 
gradient, Mu factor and generalization ability transforma-
tions during network training. gradient = 0.016751, Mu = 
1e-07.
Figure 12 shows a graphical representation of the regres-
sion curves (Regression): a visualization of the regression 
power of the network training set, validation set, and 
test set.Training: R=0.99962, Validation: R=0.99963, 
Test: R=0.99961, All: R=0.99962, Output ~= 1*Target + 
-0.0063, Output ~= 1*Target + -0.0066.
To summarize, the number of iterations is 4. With only 4 

iterations, the model has achieved a good performance. 
This indicates that the model was able to converge and 
find the appropriate parameter configuration with a rela-
tively small number of iterations. The error (performance) 
is 2.91e-05, which is a small value indicating that the dif-
ference between the model’s predicted and true values is 
small. This means that the model has high accuracy in pre-
dicting the optical performance of the point defect micro-
cavity. The Gradient (Gradient) is 0.0168, and the smaller 
value of the gradient indicates that the adjustment of the 
model parameters is relatively smooth. This indicates 
that the training process of the model is relatively stable 
and there is no instability caused by too fast parameter 
tuning.The Mu value is 1.00e-07, and a smaller Mu value 
indicates that the model uses smaller steps for parameter 
updating during the training process. This setting helps to 
avoid too fast parameter adjustment and maintains the sta-
bility of training.
The best validation performance is 3.0759e-05 and the 
coefficient of determination (R) for the validation set is 
0.99963: this indicates that the neural network model is 
able to accurately predict the optical properties of the 
point-defect microcavity of a two-dimensional GaAs di-
electric-background photonic crystal during the training of 
the model and achieves excellent performance on the val-
idation set. The small validation performance values and 
the coefficient of determination close to 1 indicate that the 
model has good generalization and fitting ability.
The coefficients of determination (R) for the training set, 
the test set and the overall dataset are all close to 0.99962-
0.99963: this means that the model adapts well to the 
training data and produces highly correlated predictions 
on the test set and the overall dataset. This further sup-
ports the generalization ability and reliability of the mod-
el.
Linear relationship between output and target: Based on 
the equation for the linear relationship between output and 
target, it can be seen that there is an approximately linear 
relationship between the output of the model and the tar-
get. This linear relationship can be expressed by a simple 
linear equation where the output is approximately equal to 
the target multiplied by one minus a constant term (-0.0063 
or -0.0066). This indicates that the model uses a linear 
approximation for predicting the optical properties of the 
point-defect microcavity.
Therefore approximate the expression:
Output ~= 1 * Target + (-0.0063)
Output ~= 1 * Target + (-0.0066)
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Figure 11 Graphical representation of the 
status of training

Figure 12 Graphical representation of the 
regression curve

These two equations represent the linear approximation 
used by the model for predicting the optical properties of 
point-defected microcavities in two-dimensional GaAs 
dielectric background photonic crystals.
Summary and outlook
The aim of this thesis is to establish a neural network 
model of point-defect microcavities in two-dimensional 
GaAs dielectric background photonic crystals and to use 
the model to predict and optimize their optical properties. 
By constructing a photonic crystal structure, introducing a 
point-defect microcavity and performing data acquisition, 
present study obtained sample data of the energy band 
structure of the photonic crystal. Then, present study de-
signed and trained a BP neural network model using the 

energy band data of the photonic crystal as a training set 
for accurate prediction of the optical properties and opti-
mization of the design, and finally succeeded in building 
a neural network model capable of quickly and accurately 
predicting the optical properties of the photonic crystal.
Through this study, the following results were achieved
(1) A neural network model for point-defect microcavities 
of two-dimensional GaAs dielectric background photonic 
crystals has been developed, which is capable of predict-
ing the optical properties of photonic crystals quickly and 
accurately.
(2) Through the application of the model, present study 
are able to solve the challenges faced by traditional meth-
ods in designing and optimizing photonic crystals and 
improve the efficiency of design and optimization.
(3) Combining the properties of photonic crystals and 
neural networks provides new possibilities for high-speed 
and efficient optical calculations.
In terms of practical applications, the results of this study 
have the following implications:
(1) Crystal device design and optimization: photonic crys-
tal point-defect microcavities have important potential 
applications in optical devices, such as fiber optic commu-
nications and lasers. With the established neural network 
model, present study are able to quickly and accurately 
predict and optimize the optical properties of photonic 
crystals, providing an efficient method for the design and 
optimization of novel crystal devices.
(2) Saving time and cost: Traditional methods require a lot 
of trial-and-error and optimization during the design and 
optimization of photonic crystals, which is time-consum-
ing and not efficient enough. The neural network model 
can achieve nonlinear mapping and prediction by learning 
the patterns and features of data, which greatly saves the 
time and cost of design and optimization.
(3) Promote the development of photonics applications: 
photonics has a wide range of application prospects in the 
fields of information technology, communication, energy 
and biomedicine. By accurately predicting and optimizing 
the optical properties of photonic crystals, present study 
can promote the development of photonic devices and 
photonic integration technologies, and provide more effi-
cient and reliable solutions for applications in these fields.

Conclusion
The results of this study provide a fast and accurate meth-
od for the prediction of optical properties and optimal 
design of point-defect microcavities in two-dimensional 
GaAs dielectric background photonic crystals. However, 
there are still some aspects that can be further extended 
and improved to make it more valuable for practical appli-
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cations.
First, further experimental validation is necessary to verify 
the accuracy and feasibility of the neural network model. 
By comparing with the experimental data, the predictive 
ability of the model can be evaluated and the performance 
of the model can be further optimized. In addition, feed-
back from experimental data can be used to adjust the 
parameters and structure of the model to improve its accu-
racy of prediction and optimization.
Second, future research can consider introducing multi-
scale and multi-parameter analysis to more comprehen-
sively and accurately characterize the performance of 
photonic crystals. The performance of photonic crystals 
is often affected by several factors, such as the size of 
the structure and the nonlinear properties of the material. 
Therefore, combining neural network models with other 
modeling methods, such as finite element methods or op-
tical simulation software, allows for the consideration of 
more complex optical effects and material properties.
In addition, the application of neural network models to 
real-world photonic device design and optimization can be 
further explored for its practical effects in engineering de-
sign and industrial applications. Close collaboration with 
engineers and industry will help customize the design and 
optimization to meet the needs of different application 
areas and accelerate the translation and commercial appli-
cation of photonics technologies.
Finally, photonic crystal point-defect microcavities are 
often an integral part of photonic devices, and integrating 
them into systems with other optical components is criti-

cal for practical applications. Future research could apply 
neural network models to photonic device integration and 
system-level design, taking into account the interactions 
and optimization between different components to achieve 
more efficient and stable optical systems.
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