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Abstract:
In the context of the “double carbon” strategy and the rapid development of deep learning, it provides new ideas for load 
forecasting of intelligent microgrids. In this study, we choose the Informer model based on the Transformer framework, 
which improves the self-attention mechanism and reduces the computational cost, to improve load accuracy and to 
achieve intelligent management of the microgrid system by accurately forecasting power load data.
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1. Introduction
With the aggravation of the global energy crisis and 
environmental pollution and the introduction of the “du-
al-carbon” strategy, the development and utilisation of 
renewable energy sources (e.g. solar, wind, etc.) has be-
come a pivotal way to solve these problems. In terms of 
its classification as a novel type of power system architec-
ture, smart microgrids show great potential for integrating 
renewable energy sources and improving grid flexibility 
and stability. However, the high level of uncertainty and 
volatility of renewable energy sources poses unprecedent-
ed challenges for microgrid management.
Load forecasting is a crucial aspect of smart microgrid 
management. Accurate forecasting of future electricity 
demand plays a core part in ensuring the security of sup-
ply, optimising resource allocation and reducing operating 
costs. Traditional load forecasting methods often fail to 
adequately capture the complex patterns and long-term 
dependencies hidden in the data, and thus may encounter 
problems such as insufficient accuracy or low robustness 
in practical applications.
As the global transition to a low-carbon economy advanc-
es, the integration of an increasing number of renewable 
energies into the existing energy system is becoming more 
and more prevalent. These energy sources, such as wind 
and solar, are characterised by intermittency and uncer-
tainty, making traditional load forecasting models chal-
lenging. In recent years, deep learning techniques have 
made considerable advances in the area of time series 
forecasting and have been successfully applied to perform 
load forecasting in several scenarios. Meng(2024) et al. 
proposed an integrated energy forecasting model based 
on the combination of spatial temporal graph convolu-

tional networks (STGCN) and the Transformer combined 
short-term load forecasting model for integrated energy 
systems[1]; Zhang(2023) et al. proposed a new model 
based on the combination of Transformer and graph con-
volutional networks (GCNs) for net load forecasting of 
electric power[2]; Sun(2023) et al. proposed a LSTM and 
multi-feature dynamic similarity day based integrated en-
ergy system load forecasting method, the objective is to 
utilise the advanced feature change law of the integrated 
energy system (IES) in order to enhance the precision of 
short-term load forecasting[3]; Yu (2022) et al. proposed a 
combined forecasting method based on chaos theory, vari-
ational modal decomposition VMD, integration of moving 
average autoregressive ARIMA model and gated recur-
rent unit GRU neural network in response to the problem 
of high stochasticity of short-term power loads and low 
prediction accuracy[4], Wang(2022) et al. proposed and 
established ARIMA-LSTM model by combining ARIMA 
model with LSTM model[5]. However, the above models, 
either single or combined models can only solve the short-
term load forecasting, Zhou(2021) et al. verified that the 
LSTM model raises the MSE very high after 48h, and 
the LSTM model fails[6]; the various combined models 
also work on the forecasting accuracy, while ignoring the 
problems of forecasting length and computational cost.
Based on the above problems, in order to address the 
issues of weak prediction precision and short prediction 
accuracy and short prediction length of general mod-
els in prediction problems, and the high computational 
cost of Transformer, this study introduces the Informer 
model, which is based on the improved Self-Attention 
Mechanism under the framework of Transformer, and the 
Informer model, as a deep learning model with improved 
design based on the Self-Attention Mechanism, shows 
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great potential in many long-series time series prediction 
(LSTF) tasks. The Informer model, as a deep learning 
model based on the improved Self-Attention Mechanism, 
is more suitable for processing long series of time data 
and has shown great potential in many long series of time 
series forecasting (LSTF) tasks[6].

2. Random forest algorithm
Electricity load forecasting is a complex time-series prob-
lem that is influenced by a number of factors, such as his-
torical load data, weather conditions, date type (weekday 
or holiday), seasonality, and trends. In order to enhance 
the prediction performance, feature selection is very criti-
cal. In this study, the Random Forest algorithm is used to 
analyse the relevance between multidimensional data and 
base electric load, screen out the feature parameters with 
high relevance, exclude the parameters with poor and ir-
relevant relevance, and reduce the complexity of data.
The Random Forest algorithm is an ensemble learning 
approach that enhances the overall model performance by 
constructing multiple decision trees and assembling their 
predictions. Feature selection using Random Forest bet-
ter captures nonlinear patterns and is scalable enough to 
handle large-scale data and a large number of features, re-
ducing the interference of weakly correlated features and 
thus improving the ability of the model to generalise[9]. 
The principle of Random Forest is based on two main 
concepts: integrated learning and decision trees.
(1) Integrated learning: integrated learning methods 
improve prediction performance by constructing and 
combining multiple models. Random forest is a typical 
example of applying this idea, which constructs multiple 
decision trees and integrates their results as a way to en-
hance the predictive accuracy and generalisation of a sin-

gle model.
(2) Decision Tree: A decision tree is a simple predictive 
model represented as a tree structure where each internal 
node is represented by an attribute test, each branch is a 
test output, and each leaf node is a category label (decision 
result). The main challenge with decision trees is that they 
are prone to overfitting, especially when the tree is deep.
Feature selection using random forests mainly focuses on 
finding the features that have the highest correlation with 
the target variable and finding the features that express the 
optimal prediction with the smallest sample size[9].

3. Informer model
From Figure. 1, it can be seen that Transformer is able to 
process the training data in parallel, which is more effi-
cient than the traditional recurrent neural network (RNN) 
and long short-term memory network (LSTM). Through 
the self-attention mechanism, the Transformer is able to 
directly establish a connection between any two positions 
in the input sequence, thus effectively solving the difficul-
ty of capturing long-distance dependencies in RNN and 
LSTM.
However, despite the many advantages Transformer 
brings, it also has some disadvantages in practical applica-
tions. Transformer requires a lot of memory and computa-
tional resources, especially for very long input sequences. 
Because each layer involves a fully concatenated opera-
tion with complexity O( L2 ) (the length of the sequence), 
and the dynamic decoding operation of Transformer leads 
to a sudden drop in the output speed, the efficiency de-
creases drastically when it comes to sequences that are too 
long. Informer was born as a variant based on the Trans-
former framework designed for time series prediction.

Figure 1 Structure of Transformer and its multi-head self-attention mechanism[9]
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3.1 . Structure of Informer
The entire structure of Informer is illustrated in Figure. 
2. To address the shortcomings of the Transformer model 
proposed above, the Informer is optimised in three ways:
1. more efficient processing of long-time sequences (Prob-
Sparse self-attention mechanism)
2. Reduce space complexity (Self-attention Distilling 
mechanism)
3. Output all predicted values at once (Generative decoder 
mechanism)

Figure 2 Structure of Informer[6]
Informer is based on the Transformer framework and 
improves on it, with the Encoder part on the left receiv-
ing extra-long input data (green part). The conventional 
Self-Attention layer is substituted with the ProbSpare 
Self-Attention layer introduced in this study. The blue 
part is the Self-Attention distilling process to perform 
feature condensation. The Encoder module enhances the 
robustness of the algorithm by overlaying the above two 
operations. On the right side is the Decoder section, which 
takes a series of long sequential inputs and pads the pre-
dicted goal position with 0. It measures the Self-Attention 
component on the Feature Map and then generates the 
predicted output (orange part).

3.2  ProbSpare Self-Attention
Informer introduces a ProbSparse self-attention mecha-
nism, which decreases complexity by calculating only the 
key-value pairs that are most likely to have higher atten-
tion weights, thus enabling more efficient processing of 
long sequence data.
The traditional self-attention mechanism is based on a tu-
ple input with the expression as

 A( , , )Q K V Softmax V=
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Q，K，V  represent matrices of Query, Key, and Value, 
respectively, and are input dimensions
The probability form of the Attention coefficient for the 
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scribes the relevance of query and key, and picks out the 
query and key with high relevance. As shown in Figure. 3, 
p is considered as some form of distribution, the closer it 
is to the uniform distribution, the less important the query 
(“Lazy” Query) is, and when the query is more active in 
some positions (“Active” Query), the weight difference is 
larger, the difference in weights is larger. The sparsity of 
the query is measured using the KL scatter measure, and 
the sparsity evaluation formula for the ith query is
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The distribution of sparse self-attention is characterised by 
a long-tailed shape, whereby a small number of dot pairs 
contribute significantly to the main attention, while other 
pairs can be relatively neglected[7]. In the first half, all 
keys are represented by the log-sum-exp function (LSE), 
while in the second half, the arithmetic mean is calculat-
ed. The larger the value of the LSE, the more important it 
is for Attention and the more likely it is to be at the front 
of the long tail of the distribution. Based on the above 
analysis, the probabilistic sparse self-attention mechanism 
formula is obtained

 A( , , )Q K V Softmax V=
 
  
 

QK
dk

T
 (4)

It would be beneficial to ascertain the location of a sparse 
matrix with the same Q-width that contains only the 
largest u c lnL= • Q  queries under sparse evaluation, mak-
ing the sparse self-attention mechanism only need to do 
O( lnLQ ) dot products in each query-key lookup. Accord-
ing to the above theory, it makes the sparse self-attention 
mechanism’s overhead of each layer is reduced, and the 
computational complexity is reduced from O( L2 ) to O(Ll-
nL) [8]
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Figure.3 The more active the query in different positions 
in the self-attention mechanism the greater the difference 
in weights, and vice versa the smaller the difference

3.3 Self-attention Distilling and Decoder
In the Encoder module, the Informer uses Self-Attention 
Distilling, a distilling step that involves “distilling” the 
input sequence into shorter versions for use in subsequent 
layers. This means that the most informative or important 
parts of the original input data set are filtered out and other 
parts are removed to simplify the subsequent processing, 
reducing the memory and time required by the algorithm, 
as shown in Figure 4.

Figure 4 Architecture of encoder.[6]
The expression for the distillation operation from the jth 
layer to the j+1th layer is

 X MaxPool ELU Conv d Xt t
j j= ( ( 1 ))(   AB )  (5)

  X t
j AB

 includes a multi-head probabilistic sparse 

self-attention mechanism and necessary procedures, and 
the output of each block passes sequentially through a 
Conv1d one-dimensional convolutional layer, an ELU 
activation layer, and a layer of maximum pooling with a 
stride length of 2 is appended after one layer is pile-up. To 
improve the resilience of the algorithm, a half-copy of the 
primary stack is built and the amount of self-attention dis-
tilling layers is progressively decreased by discarding one 
layer at a time so that their output dimensions are aligned. 
Finally, the outputs of all stacks are concatenated to yield 

the ultimate encoder.
The input time series X de

t  is divided into a sequence of 
historical loads Xtoken

t  and a sequence of predicted loads 
X0

t  (where the scalar is filled with zeros) in the decoder’s 
processing, which takes the following form
 X Concat X X Rde token

t t t= ∈( , )0
( )L L dtoken y model+  (6)

The 100% interconnected connected layer generates the 
final output, generating all the predicted sequences at once 
to achieve the purpose of shortening the decoding time.

4. Evaluation indicators
this study assesses the predictive effectiveness of the 
model using mean absolute error (MAE) and mean square 
error (MSE), as defined by the following formulae.

 MSE y y= −
1
n ∑

i=

n

1

( )ˆi i
2  (7)

 MAE y y= −
1
n ∑

i=

n

1

ˆi i  (8)

The number of samples included in the training set is de-
noted by n; yi 、 y

−
、 ŷi  are the true value, the average of 

the true value and the predicted value of the data at time t, 
respectively. R2  reflects the correlation between the true 
value and the predicted value, and the closer the value 
is to 1, it means that the model fits the model better; it 
reflects the degree of discrepancy between the estimated 
quantity and the quantity to be estimated, a measure; the 
MAE can avoid the problem of the mutual offset of the er-
ror, and thus the actual size of the prediction error can be 
accurately reflected. It can be observed that as the value 
of MSE and MAE increases, the prediction accuracy also 
increases. The lower the values of MSE and MAE, the 
greater the prediction accuracy.

5. Calculus analysis
5.1 . Data description and data pre-processing
In order to validate the veracity of this experiment, the 
standard dataset provided by the Ninth “China Electrical 
Engineering Society Cup” National University Students’ 
Mathematical Modelling Competition for Electrical En-
gineering was used for the calculations [10]. The power 
load values and meteorological data (daily maximum 
temperature, daily minimum temperature, daily average 
temperature, daily relative humidity and daily rainfall) 
from 1 January 2012 to 10 January 2015 were selected for 
the purpose of predicting the short-term load of the power 
system in a certain region.
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Figure 5 Load over Time
The total power load is shown in Figure. 5, which can be 
seen to present a cyclical-like feature, which may be af-
fected by seasonal features. In this study, the features are 
divided into three categories, and the temperature feature 

with the largest width of change is decomposed into three 
to obtain six dimensions of input features, and then the six 
feature dimensions are analysed and screened.

5.2 . Feature processing and analysis
Using the random forest algorithm, the input data are 
screened for features, and the features with high relevance 
are selected to enhance the robustness of the prediction 
model; the feature components with low relevance are 
eliminated to avoid the overfitting phenomenon. In load 
forecasting, feature factors such as temperature, humidity 
and rainfall all have a certain impact on forecasting, and 
feature importance assessment is carried out by Random 
Forest and important features are selected, and the results 
are shown in Table 1 and Figure 7.

TABLE1. Characteristic factor correlation analysis
Feature Category Feature Correlation Coefficient

Temperature characteristics
Daily maximum temperature(℃) 0.137
Daily minimum temperature(℃) 0.324
Average daily temperature(℃) 0.359

Humidity characteristics Daily relative humidity 0.126
Rainfall characteristics Daily rainfall(mm) 0.053

Figure. 6 Feature selection result graph
From Table 1 and Figure 6, it can be seen that the cor-
relation of temperature factor is higher than humidity and 
rainfall, and according to the correlation coefficient, the 
correlation coefficients of factors such as temperature and 
humidity are in the range of 0.1 to 0.5, which is a strong 
correlation to the load. While the correlation coefficient 
of rainfall is lower than 0.1, the correlation is low, and the 
feature of rainfall is excluded in order to achieve the effect 
of reducing the calculation volume of the model.

TABLE2. Multivariate long series time series prediction results
Model No Feature Extraction Feature Extraction
Metric MSE MAE MSE MAE

6 0.241 0.342 0.249 0.364
12 0.281 0.383 0.340 0.433
24 0.295 0.395 0.312 0.411
48 0.423 0.427 0.351 0.428
96 0.370 0.433 0.363 0.428

A comparison is made between the results of the integrated model prediction and the actual data, as shown in Figure 
7, and from Table 2, it can be noticed that the model using feature extraction achieves better results in both MSE and 
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MAE metrics at longer time window lengths (48, 96). This indicates that Feature Extraction can help the model to 
better capture the key features in the input data, thus improving the prediction accuracy for longer time series. For time 
window lengths of 6, 12, and 24, the models without and with feature extraction have lower MSE and MAE, which 
implies that the models can predict loads more accurately over shorter time horizons.

Figure 7 Comparison of real and predicted 
values of the Informer model

6. Conclusion
In this study, for the load forecasting problem, we propose 
a deferred model Informer based on the framework of 
Transformer’s attention mechanism, study the influence 
of input features on the forecasting results, analyse the 
relevance of input features through the Random Forest Al-
gorithm, retain the features with strong relevance, and im-
prove the robustness of the forecasting model; eliminate 
the features with low relevance, reduce the dimension of 
inputs, and reduce the computational The features with 
low correlation are eliminated to reduce the dimension-
ality of the input, reduce the computational complexity, 
and avoid overfitting. Through experimental validation, it 
is concluded that although the performance of the model 
varies under different time window lengths, overall, the 
performance is relatively stable. This indicates that the In-
former model is robust in dealing with the load prediction 
problem under different time scales; feature extraction 
can improve prediction accuracy for longer time series by 
helping the model to better capture key features in the in-
put data.
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