
Dean&Francis

Augmented Reality Text Translation: A Unity-Based Real-Time
Approach

Youding Yin1,+ *, Guanzheng Liu2+, Shiqi Zhang3+

1Department of Computer Science and Software Engineering, Rose-Halman Institute of Technology, Terre Haute, IN,
47803, United States, 008023you@gmail.com

2Department of Information and Communication Engineering, Hubei University of Economics, 430070, 20130223@
email.hbue.edu.cn

3College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China,
2021020171@buct.edu.cn

+These authors contributed equally to this work and should be considered co-first authors.
*Corresponding author email: 008023you@gmail.com

Abstract:
Language barriers have remained as one of the biggest challenges when it comes to global communication. The need for
text translation to happen in real time has been on the rise due to the idea of globalization in the past decades. However,
there are very few well-developed applications on the market right now to serve the purpose of real-time text translation.
This paper presents a Unity-based application that seamlessly translates text in real time in an augmented reality
environment. It successfully combined Unity engine and C# scripts with services such as Google Cloud Vision and
Google Translate to address the problem of cross-lingual understanding. The application utilizes a pre-trained machine
learning model from Google Cloud Vision to recognize and translate texts and pins the translated text in relative
positions on the camera as objects. The overall outcome of the application demonstrated the possibility of breaking
down text language barriers. It also proved the potential usage of such technology in daily life. Users were able to view
translated text objects through the perspective of augmented reality thus enabling a seamless translation experience in
various environments.
Keywords: Translation, Augmented Reality, Computer Vision, Machine Learning, Unicode Classification.

1. Introduction
In today’s increasingly interconnected world, language
continues to pose a significant barrier to effective com-
munication. Despite the growing capabilities of various
translation applications, there remain substantial limita-
tions in the realm of text translation. Even with features
like photo translation introduced by companies like Goo-
gle, translation convenience has been greatly improved.
Photo translation combines image recognition technology
and translation technology to offer a more convenient lan-
guage translation solution. During its usage, users align
their devices with the text they wish to translate, take a
picture, and the application uses text recognition to extract
text from the image. It then translates the extracted text
into the user’s chosen language, displaying the translation.
This process eliminates the need for manual text input,
resulting in intuitive results and significantly enhancing
user experience.[1] Existing photo translation applica-

tions include Google Translate, Baidu Translate, Youdao
Translate, among others. However, despite these advance-
ments, challenges persist in various real-life scenarios.
For instance, situations like driving a vehicle may not
afford users the time to capture images with their devices,
rendering them unable to access translated text. Moreover,
while the process of using photo translation has been
streamlined to a great extent, it can still be cumbersome
during activities like traveling where frequent picture-tak-
ing for translation information remains inconvenient.
To address these issues, we require a more convenient and
real-time translation solution. After a series of consider-
ations, we’ve decided to introduce Augmented Reality
(AR) technology into the field of translation to create an
almost real-time translation effect. As an emerging tech-
nology, AR blends virtual and real elements, enabling
users to interact with virtual elements in real time while
retaining their perception of the real world. We believe
that AR technology can be used to translate captured text

ISSN 2959-6157

1

Dean&Francis

in real time, projecting the translated text directly near the
original text’s location. [2] This approach could poten-
tially be implemented on smart glasses, freeing the user’s
hands and delivering a real-time translation experience.
This paper aims to explore the feasibility, implementation
methods, and limitations of AR-based real-time transla-
tion.
In this paper, we use a method of capturing images
through successive screenshots, extracting text using the
Google Vision API, and performing translation using the
Google Translate API. The paper will delve into the prac-
tical approach of employing these technologies and high-
light the limitations of relying solely on these APIs.

2. Method
2.1 . Overview
The overall flowchart of the working application is pre-
sented in figure 1. The whole project is done with Unity.

Once the application is started, the camera will start cap-
turing and sending screenshots to Google Cloud. With a
pre-trained machine learning model that recognizes texts
in images, Google Cloud is able to provide results with
potential languages characters and each of their bound-
ing box coordinates. The application will receive those
results and store them in different data structures waiting
for parsing. After the parsing, the application then sends
those texts that require translation to Google Translate
and waits for the response. Google Translate will translate
the received texts and return the result to the application.
Finally, the application will use C# scripts to spawn text
objects on Unity canvas which are visible to the user with
the bounding box coordinates and the translated texts. The
application will perform the processes mentioned above
continuously until the application is eventually stopped by
either the user or the system.

Figure 1 Flowchart of overall application
2.2 . Application User Interface
In the current version, the application’s user interface
contains merely a starting menu whenever the user tries
to boot up the application. The starting menu provides
all the basic information and configuration regarding the

application, this includes application naming title, input
and output language settings, both start and quit function-
ality buttons, and finally a link that directs the user with
keywords that can help set the translating languages. For a
clear graphic demonstration, refer to the image 2 present-
ed below.

2

Dean&Francis

Image 1 Starting Menu User Interface
The input and output languages option prompts the user
to enter their desired translation languages. As image 2
has shown, the “From” user input is used for prompting
the user to enter the keyword that is wished to be detected
and translated. By default, the setting for the “From” input
is “zh-CN”, which represents Simplified Chinese as the
original goal of the project is only for the application to
translate Simplified Chinese to other languages of choice.
At the current state of the application, the application can
only set the “From” languages to CJK languages explicitly
due to limitations of the code base. CJK language, in the
current context, refers to Chinese, Japanese, and Korean
characters. It is a goal in the future for the team to make
extensions to the current code base so that the application
can support a wider range of “From” input languages. As
for the “To” user input, it indicates the configuration of
the language that the user wants their texts to be translated
to. Different from the “From” user input, the application
can support all common languages that are provided in
the Google Translated API. The bottom link provided in
the starting menu will take the user to Google Translate’s
website so the user can select the desired language key-
words from the web link.

2.3 . Communication with Google Cloud Vision
After the user finishes the configuration and enters the

main application camera, the application will start taking
screenshots of the camera capture and sending them to
Google Cloud Vision. Although the application aims for
real-time translation, it is still difficult to achieve video
result text recognition and extraction. Therefore, we took
the approach of letting the application take continuous
screenshots as a substitute and hence mimicking frames in
a video capture. We then analyze each frame of the video
with Google Cloud Vision to constantly take in responses.
Once the frame is sent to Google Cloud Vision, a pre-
trained machine learning model is then applied to analyze
the input. The model is able to recognize different char-
acters from all common languages and send back results.
The results, which are compacted in a JSON response,
contains the language that the model recognized, the texts
extracted from the image, and each corresponding bound-
ing-polygon of texts. This JSON response will be received
and stored in our application scripts for further use. It is
also worth mentioning that the overall communication
process requires a Google Cloud Vision API key to func-
tion.

2.4 . Google Translate API
Once the application scripts have the extracted texts from
the Google Cloud Vision responses, it will then recog-
nize the parts of the response texts that require transla-

3

Dean&Francis

tion based on the “From” language user inputs set in the
starting menu. This is accomplished by breaking the CJK
letters and characters into Unicode blocks that contain
graphic characters used specifically in CJK. These blocks
are used in Ideographic Description Sequences to describe
a potential ideograph which contains graphic sign lan-
guage characters that are not encoded in the original Uni-
code system.
In the application’s code base, the team has written an
infrastructure that works as a CJK Ideograph identifier.
Once a CJK character’s unicode has been detected, the
line of text is then flagged as a potential CJK sentence.
Since the team doesn’t want the translation process to
lose the meaning of possible mixed languages sentences,
these flagged texts will all be translated as a regular CJK
sentence. This way, the application not only reduced the
workload by not having to translate all texts, it also kept
the completeness in translated meaning of some mixed
sentences
After the application finishes identifying all potential sen-
tences that need to be translated, it will then send those
texts to Google Translate API to conduct the actual trans-
lation process. Results of the translation will likely be the
same as if the translation is done through Google Trans-
late’s online services, all results received from the transla-
tion process will be passed on as responses from Google
Translate to the application. It is also worth mentioning
that in order to reduce the run-time of the application, it is
one of the team’s future goals to move the whole transla-
tion process to a local server. This can be done by running
an application image using services such as Docker, more
details will be discussed in the later sections of this report.

2.5 . Spawning result texts in real time
One of the final stages of the application flowcharts is to
show the translated text over the camera canvas in Unity.
This can be achieved in many different ways but the team
chose the approach of spawning dummy texts with a pre-
fab text object hidden under the main camera canvas. In
Unity, the team set up a prefab text object that has the ex-
ample fonts, text size, and text color. The team then uses
a C# script to spawn other dummy text objects with the
input of translated text results received from the Google
Translate API. These spawned text objects then have their
position adjusted with the bounding-polygon coordinates
returned by the Google Cloud Vision API. With the coor-
dinates, these text objects can then be attached to a rela-
tive position of the original texts in the image taken by the
application.
However, there can be the problem that whenever the user
decides to walk away and aim the camera at a different
object and try to translate, the previously spawned dummy
text objects will then populate the entire camera canvas

regardless of the current contents captured by the camera.
To solve this problem, the team decided to take the ap-
proach of destroying all previous text objects on the frame
and start fresh with the new frame. This way, each time
translated results are received, a new wave of dummy text
objects will be spawned on the screen as the previous text
objects are cleared. The user will only see one set of float-
ing translated text objects on the main camera canvas and
thus solving our problem, and when no texts are detected,
the main camera canvas still destroys all text objects leav-
ing a clean canvas shown to the user.

2.6 . Scene Analysis
In real-time or scenario translation, the scenes captured
by the device are subject to constant change as the user’s
perspective shifts. Consequently, the content requiring
translation also varies accordingly. Examples include out-
door scenarios like billboards and road signs, as well as
indoor scenarios such as bulletin boards and materials on
a desktop. Some scenes involve only a single translation
point, such as a sticky note on a desk, while others have
multiple instances for translation, such as traffic signs on
a highway, where multiple signs may appear at the same
intersection. The translated results presented to the user
need to consider the correspondence between translated
text and its original position. This intuitive correspon-
dence aids users in determining the alignment between
translated text and the original content, reducing the
likelihood of errors. This aspect is especially crucial for
scenarios like highway signage, which demand quick and
accurate reading and translation. Various methods can be
employed to establish the correspondence between the
original and translated texts (positions), such as using the
same color for both. In this project, we have employed a
method where translated text follows the original content,
meaning that the translated text is projected just below the
corresponding original text, ensuring utmost clarity.

2.7 . Temporal Characteristics
It is important to consider the duration for which a piece
of text must be visible before translation is required. Not
all text necessarily needs to be translated, as users are of-
ten only interested in specific portions. A simple approach
is to determine a temporal characteristic for collection: if
a particular piece of text is captured three times consecu-
tively, translation is initiated; otherwise, it is skipped.

2.8 . Unity Implementation of Translation Text
Following Process
The translation process is outlined as follows:
1. Obtain an image through the camera.
2. Determine if there is any text in the image. If text is
present, further analyze whether the text requires transla-
tion.

4

Dean&Francis

3. If translation is required, invoke cloud-based translation
software to translate the text, resulting in the correspond-
ing translated text.
4. Calculate the original text’s position and project the
translated text just below it.

2.9 . Data structure

In this project, we utilize `System.Serializable` to store
information for each line of text.
System.Serializable is an attribute in C# that indicates that
a class or struct can be serialized. Serialization is the pro-
cess of converting an object’s state into a format that can
be easily stored or transmitted and later reconstructed.

Image 2 TextLineInfo class code
We have defined a `public class TextLineInfo` to store
various pieces of information for each line of text. Within
this class, we include the following elements:
1. A `string` element named `text` to store the actual text
content of the line.
2. A `Vector2` element to store the coordinates of the four
vertices of the text bounding box.
(In C#, Vector2 refers to a structure that represents a 2D
vector or point in a Cartesian coordinate system. It is part
of the System.Numerics namespace)
3. A `bool` element named `containsChinese` to determine
whether the text contains CJK characters (Chinese, Japa-
nese, Korean).
4. A `string` element named `translatedText` to store the
translated version of the line’s text.

To enhance usability within this group, we have imple-
mented a constructor named `TextLineInfo()`. This con-
structor accepts two parameters: the original text content
of a specific line and the coordinates of the four vertices
of the text bounding box. Within this constructor, the cor-
responding elements of the class are initialized by copying
the provided values. The two optional elements, `contain-
sChinese` and `translatedText`, are assigned default values
if not provided. Specifically, `containsChinese` defaults
to `false`, indicating that CJK elements are not present by
default. `translatedText` is assigned an initial value of an
empty string.

2.1 0. Algorithm implementation
The overall process of the algorithm used for processing
texts to be translated is presented here in figure 2.

Figure 2 Translation algorithm flowchart

5

Dean&Francis

Firstly, we perform preprocessing on the data returned by
the Google Translate API. The original content from the
API recognition is initially stored in the string `fullText`.
The API’s response contains data separated by newline
characters `\n` to represent different lines. After a series of
processing steps, each line of text separated by `\n` is split

and stored into a string array named `textLines`.
Simultaneously, an empty `List<TextLineInfo>` named
`textLineInfos` is created. This list serves the purpose of
storing information for each word along with its bounding
box.

Image 3 Translated text processing code
Here, within each piece of information returned by the
API, the characters of each word along with the coordi-
nates of the four bounding box vertices for that word are

stored in a single `textLineInfo` object using a constructor.
Subsequently, the `lineInfo` object is added to the `List<-
TextLineInfo>` named `textLineInfos`.

Image 4 Bounding ploy box to TexLineInfo code
Here, a new empty `List<TextLineInfo>` named `newTex-
tLineInfos` is created. This list is distinct from the previ-

ous one and is intended to store various information for
each line.

Image 5 List of TextLineInfo class

6

Dean&Francis

In this context, the integer variables `aIndex` and `bIn-
dex` respectively represent the indices of the string array
`texts` (which stores each line of text) and the string array
`textLineInfos[].text` (which stores the text of each word).
Both of these indices are initially set to 0, indicating the

start of the traversal. If at the current indices, the strings
in the two arrays are exactly the same, it signifies that a
line contains only a single word. In this case, the informa-
tion of this word is stored in the `newTextLineInfos` list,
which holds information for each line.

Image 6 Checking whether the text should be translated
If the strings are not exactly equal, it indicates that the
line contains more than one word. In this case, a loop is
used to combine the next word string from the word ar-
ray with the existing word string. This combined string
is then compared with the line information until all cor-
responding words in that line have been merged. At this
point, the top-left and bottom-left coordinates of the first
word in the merged set of words are taken as the top-left

and bottom-left coordinates of the line, while the top-
right and bottom-right coordinates of the last word in the
merged set are taken as the corresponding line’s top-right
and bottom-right coordinates. Since the text within the
line has been merged, if the line contains CJK characters,
the `translate()` method is called again to translate the text
within the line. Subsequently, all the relevant information
is stored in the list `newTextLineInfos` for line texts.

Image 7 Checking correspondence with line text

7

Dean&Francis

Image 8 Error log when no correspondence found
2.1 1. Translation Recording
To further expand the application’s functionalities and
usability, the team chose to integrate a local MySQL da-
tabase system into the application to record every trans-
lation result along with relevant information. This will
aid in recording translation history, analyzing data, and
providing persistent data storage. Here is an introduction

of how the local database is integrated into the system.

2.1 1.1. Local Database Table Structure
Before integrating the local database, a suitable database
table structure needs to be designed to store translation
records. Below is the database table structure used in the
system:

Table 1. History Table of Database
Column name Data type Comment Primary

id int Primary key √
source varchar(255) Source language
target varchar(255) Target language

original varchar(255) Original text
translation varchar(255) Translated text

time timestamp Translation time

The history table is designed to store translation history
records in the database. Each row represents a record of
one translation. The id column is defined as the primary
key of the table, indicating that each record has a unique
identifier named id. It has a data type of int, which is an
integer with a size of four bytes. The source column stores
the source language name of the translation, represented
by the abbreviation name used in Google Translate, which
represents a language and cultural code. For example,
Chinese is represented by zh-CN. This column has a data
type of varchar(255), allowing storage of text data with
a maximum length of 255 characters. The target column
stores the target language name of the translation, repre-
sented by the abbreviation name used in Google Translate.
It is also a varchar(255) column. The original column is
used to store the untranslated original text, i.e., the text
to be translated. The translation column is used to store
the translated text, representing the translation result. The

time column is of type timestamp and is used to record the
timestamp of the translation operation. This allows you to
track when each translation operation is executed.

2.1 1.2. Database Operation Flow
The integration process entails a structured workflow of
database operations carried out during and after transla-
tion instances:
Establish Connection: Firstly, the application will estab-
lish a connection with the local MySQL database, em-
ploying appropriate credentials and connection parameters
such as the name of server, port number, database name,
username and password.
Create Insert Statement: The application will get the trans-
lation-related information, including source language, tar-
get language, original text, translated text, and translation
time after using Google Translate. Then, the application
will construct an insert statement based on the informa-
tion.

8

Dean&Francis

Execute Database Operation: After all the preparation
work is completed, an insert query operation will be ex-
ecuted and a new record will be inserted into the History
table.

Close Connection: After completing the database opera-
tion, the application will close the connection to the local
database to ensure resources are appropriately released.

Figure 3 Database operation flowchart
2.1 1.3. Enhanced User Experience
By storing translation records in the local database, the
system can offer the following enhanced user experience:
Historical Record Query: Users can query previous trans-
lation records, reviewing past translation content and
times.
Analysis and Statistics: The application can leverage
stored data for analysis and statistics, such as identifying
which language combinations have higher translation de-
mands or frequently used translation content.
Improved Model and Algorithm Accuracy: The stored
data can be utilized to enhance the accuracy of models
and algorithms. By analyzing historical translation data,
patterns and trends can be identified, leading to insights
that could refine the translation process and contribute to
the continual improvement of the translation application’s
accuracy.
Offline Access: Since data is stored in the local database,
users can access previous translation records even when
not connected to the internet.
Incorporating a local MySQL database system into the
translation application demonstrates a strategic approach
to enhance functionality and user experience. This part
has highlighted the intricacies of the database’s structural
design, the sequence of database operations, and the resul-

tant benefits for users. Moreover, practical considerations
for implementation have been underscored, which aug-
ments the application’s capabilities and data management
prowess.

3. Result
Although the method section already demonstrated the
concepts behind the application, a clear walkthrough with
application screenshots is still necessary for a better un-
derstanding. The overall performance of the application
will be shown and discussed here.

3.1 . User Interface and Experience
User interface is a critical part of the over application.
Starting from the very beginning, users will be able to
provide both “from” language and “to” language as part
of the settings. Users can also visit the link provided at the
bottom of the menu page for more language keywords.
If users choose to set the application to default, they can
simply leave the both language input text fields blank and
continue from there. This will set the “from” language to
Simplified Chinese and “to” language to English. After
setting the language preferences, users can either choose
to start the translation process by clicking the “Start” but-
ton or exit the application by clicking the “Quit” button.

9

Dean&Francis

Image 9 Menu UI Screenshot

Image 10 The user setting the languages to Japanese and Simplified Chinese
3.2 . Translation Accuracy
For the translation process, the team is confident that the
accuracy is high enough to support common words and
sentences translation regardless of the language. Since the

application uses Google Translate API, as long as the API
still functions and no major problems happen for Google
Translate’s translation quality, the translated texts appear-
ing on the screen will always be accurate enough to help
the user navigate through foreign language environments.

Image 11 Translation Result Screenshot

10

Dean&Francis

As Image 11 has shown, the overall translation of the texts
at the back of the phone regarding its company and model
are accurate and clear enough for the user to understand.

3.3 . Database Usage
In this study, we utilized a database to store and manage
our data.
Image 12 shows the establishment of a connection with
the database and the display of the results on the console
at the beginning of the program execution. This connec-
tion was achieved by using the appropriate database con-
nection string and the relevant database driver.
Image 13 illustrates the results displayed on the console
for each database insertion operation. These insertions

were performed by executing the corresponding SQL
statements, and we used the appropriate database insertion
syntax to insert the data into the database.
Image 14 describes a single record inserted into the da-
tabase. This record includes specific data fields and their
corresponding values, which were correctly inserted into
the respective table of the database.
By utilizing a database, we were able to efficiently store
and manage our data, and perform retrieval and manipu-
lation of the data through executing appropriate database
operations. This played a crucial role in the smooth execu-
tion of our research project.

Image 12 Establishing Connection with Database

Image 13 Execution of Insert Statement

Image 14 A Record in Database
3.4 . Application Performance
The discussion of the application performance can be
divided into translation time and character recognition
performance. For the translation time, it is highly depen-
dent on the application’s connection with Google Cloud
Vision and Google Translate API, therefore whenever the
application is run outside of the service range of the two
APIs mentioned, the overall translation speed is reduced
significantly. This is a problem that cannot be resolved by
the team. On the other hand, the result of character recog-
nition is already demonstrated in Image 3. The translated
text “Use 20” is the translation of part of the words 进网
试用 and the number 20 to the right of the words. This is
caused by the shaking of the camera when trying to recog-
nize the characters in the camera capture range.

4. Discussion
Currently, the application is at a stage where all the basic
functionalities are working. However, there are still lots
of potential improvements the team can make to the appli-
cation so that the user will have a better experience. This
section will be focusing on the current problems of the

application and trying to come up with appropriate solu-
tions.

4.1 . Translation Performance
The application currently has the whole operation of re-
ceiving results and sending pre-translated results running
at a local level. This means that all scripts are written
internally within the Unity engine that the application
is running on. In the future, the team could move all the
script operations into a cloud service, thus reducing the
cost of running by a huge amount and improve the overall
translation performance of the application. This can be
done by running a local translation library on applications
such as Docker and connecting the application to Docker
with API. The application will then receive the translation
result regardless of the stability of the connection with
Google server. The user from outside the Google service
range will then be able to use the application much more
easily.

4.2 . Translated Texts
The team had the idea of spawning translated texts in
camera as 3D objects so that these translated texts will
cover the original texts regardless of the angle that the

11

Dean&Francis

user takes when looking at the pre-translated texts with
the camera. This can be done by designing a system that
can help pinpoint the exact locations of the pre-translated
texts in the current space and spawning 3D objects with
those locations.

4.3 . More Languages Supports
At the moment, the application can only recognize and
translate CJK languages. It will be a huge improvement if
the application can recognize and translate all languages
that are listed inside the Google Translate language list.
This can be done by re-organizing the code base so that
the application will be able to turn all languages into uni-
code to recognize them correctly.

4.4 Running speed
Due to our use of both the Google Vision and Google
Translate APIs, there were instances when the connection
to Google’s APIs was not optimal, particularly when used
within mainland China. This led to significant delays, im-
peding the attainment of real-time translation, especially
during scenarios with rapidly changing scenes such as
high-speed movements. In order to address this issue, we
are considering performing text recognition or translation
processes locally in subsequent improvements. Given the
need to handle a variety of outdoor scenes, artistic fonts,
and handwritten text, we are still considering using mature
pre-trained datasets for text recognition.

4.5 More application context
The main focus of this project was on solving line-by-line

translation, which is more suitable for outdoor translation
of slogans, billboards, etc. However, there are limitations
in dealing with large coherent blocks of text, and errors
might occur when dealing with multi-line text. For future
enhancements, we hope to introduce other methods, such
as extracting punctuation positions, to improve the accu-
racy of translation for multi-line texts.

4.6 Improving Storage
The application can be improved by using cloud storage.
Migrating a local database system to the cloud offers
several advantages. Firstly, it eliminates the need for ex-
pensive hardware equipment and dedicated personnel for
maintenance, reducing costs. Additionally, cloud service
providers have robust data backup and recovery mech-
anisms, ensuring data security and availability. Cloud
databases also enable cross-device and cross-location data
access, improving work efficiency and flexibility. Overall,
cloud databases offer cost savings, convenience, and en-
hanced data security compared to local database systems.

5. Acknowledgement
Youding Yin, Guanzheng Liu, and Shiqi Zhang contribut-
ed equally to this work and should be considered co-first
authors.

References
[1] Google Translate Help. (2023). https://support.google.com/
translate/answer/6142483
[2] Alan B. Craig, Understanding Augmented Reality: Concepts
and Applications, Morgan Kaufmann Publishers, 2013.

12

