
Dean&Francis

Design and application of UAV single target tracking system based on
YOLOv5

Hongbo Fan

School of China West Normal University, Nanchong, Sichuan, 637009, China
Abstract:
In aerial reconnaissance, pursuit, and post-disaster search and rescue, rotorcraft UAVs are valued for their agility. A key
challenge is target tracking in complex environments with no prior information, dense obstacles, GNSS signal loss, and
occluded targets. This paper introduces a YOLOv5-based UAV tracking system to address detection and path planning.
The quadrotor UAV model ensures stable flight through mathematical modeling and simulation. YOLOv5 enhances
detection performance with real-time tracking. Feedback control enables autonomous obstacle avoidance and target
tracking. Results show adaptability and robustness, supporting reconnaissance and rescue missions effectively.
Keywords: Quadrotor UAV, YOLOv5, Target Tracking, Feedback Control, Path Planning

1. Introduction
In recent years, UAV technology has advanced rapidly,
particularly with multirotor UAVs in commercial appli-
cations like power line inspection, agriculture, search and
rescue, and cargo delivery. Traditional research focused
on high-altitude applications, but as UAVs expand into
low-altitude and complex scenarios, the emphasis has
shifted towards enhancing intelligence and autonomy. Ad-
vances have improved UAVs’ ability to operate in com-
plex environments, extending applications to aerial pho-
tography, surveillance, and search and rescue. Fixed-wing
UAVs are unsuitable for target tracking due to their speed
and size, whereas quadrotor UAVs excel in flexibility and
maneuverability [1,2]. Autonomous UAV navigation and
trajectory planning in complex environments remain chal-
lenging, requiring solutions for environmental perception,
modeling, and efficient trajectory planning. This paper
investigates algorithms for predicting moving target tra-
jectories and rapid tracking path generation, constructing
a UAV tracking system for unknown targets in complex
environments, valuable for defense, broadcasting, security
patrols, and search and rescue. Therefore, this research is
of significant practical importance.

2. Literature review
Trajectory planning for quadrotor UAVs begins with de-
termining trajectory representation and solving methods.
Mellinger and Kumar [3] used fixed-duration splines,
optimizing smoothness with the squared norm of the
fourth-order time derivative, but lacked effective duration

optimization for spline segments. Bry et al. [4] incorpo-
rated UAV dynamics, proposing a closed-form solution
for the quadratic programming problem with high-order
continuity and waypoint constraints, using RRT* for path
generation. However, it struggles in dense obstacles and
cannot explicitly include flight speed constraints. Deits
et al. [5] and Gao et al. [6] used convex polyhedra to
describe feasible regions, ensuring safety through linear
constraints on Bézier curve control points. Deits’ method
suffered from low computational efficiency, while Gao’s
approach alternately optimized the trajectory’s geometric
and temporal characteristics, improving computational
efficiency and safety.

3. Methods
3.1 UAV Attitude Modeling
3.1.1 Establishing the Coordinate System

The “North-East-Down” geographic coordinate system is
chosen as the navigation frame (n-frame), and the “For-
ward-Right-Down” coordinate system is used as the body
frame (b-frame). The n-frame is orthogonal relative to
the Earth’s horizontal plane, with X n , Yn and Zn axes
pointing north, east, and down. The b-frame is fixed to the
UAV with X , Y and Z axes pointing forward, right, and
down. The transformation matrix from the n-frame to the
b-frame is represented by the direction cosine matrix:

ISSN 2959-6157�

1

Dean&Francis

	

C

 
 
 
 
 cos sin cos sin sin cos sin sin sin cos cos cos

cos sin sin cos sin sin sin sin cos cos sin cos

n
b =

ψ φ θ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

cos cos cos sin sinθ ψ θ ψ θ
− +
+ −

−
�� (1)

3.2 System Model Establishment
3.2.1 Attitude Estimation Based on Accelerometer

The accelerometer outputs the body acceleration. The
gravitational acceleration in the navigation frame is

g gn = (0,0,)T , and the output of the accelerometer in the

body frame is a a a ab x y z= (, ,)T . The transformation rela-

tionship is:

	
     
     
     
     
     

a C g
a g

a g g

x

y n

z

= =b

0 sin
0 cos sin

cos cos

−

θ φ
θ φ

θ
� (2)

From the accelerations obtained by the above formula, the
pitch and roll angles can be derived as:

	








θ

φ =

= −

arctan

arcsin

 
 
 

a
a

 
 
 

y

z

a
g

x

	 (3)

3.2.2 Attitude Estimation Based on Magnetometer

The magnetometer outputs the geomagnetic field vector.
On the Earth’s surface, the geomagnetic field typically
points toward magnetic north, consisting of a northward
component and a vertical component, but no eastward
component. Therefore, the magnetic field vector in the
geomagnetic coordinate system can be expressed as
(N,0,D). When the geomagnetic coordinate system coin-
cides with the navigation frame n, m M Mn = (,0, 0) rep-
resents the magnetometer output in the navigation frame.
Assuming the magnetometer output in the body frame b is

m m m mn x y z= (, ,)T , it can be transformed using the trans-

formation matrix Cn
b as follows:

	 m C mb n n= b � (4)
After simplification, this becomes:

	
   
   
   
   
   

m M
m M M

m M M

x m

y m

z

=
cos cos sin

sin cos

θ ψ θ
cos sin
θ θ+
θ ψ

−

0

0

� (5)

Thus, the horizontal component of the geomagnetic vector
is:

	
 
 
 

M Mcos cos sin
M
θ ψ θ

cos sinθ ψ
m −

m

0 � (6)

The yaw angle can then be calculated as:

	 ψ m = arctan
 
 
 

m
mx

y � (7)

Finally, the magnetic yaw angle is given by:
	 ψ ψ αmag = +m � (8)
where α is the magnetic declination, correcting the angle
difference between magnetic north and true north. This
method uses geomagnetic information from the magne-
tometer, applying a mathematical model and coordinate
transformation to accurately estimate the UAV’s yaw an-
gle.
3.2.3 Attitude Estimation Based on Gyroscope

The gyroscope outputs the angular acceleration of the
sensitive carrier. The dynamic model update of gyroscope
angular velocity based on quaternions can be expressed
as:

	 q q = ⊗
1
2

ωb � (9)

where ω ω ω ωb = ()x y z, , represents the angular velocity

measured by the gyroscope, and q q q q q= (, , ,)0 1 2 3
T rep-

resents the attitude quaternion. The matrix form of equa-
tion (10) can be expressed as:

	

   

   

   
   
   

   
q q

q q

q q

q q






1 1

0 0

2 2

3 3

=
1
2

 

 
 
 

 

 
 

ω ω ω
ω ω ω

ω ω ω

0

x z y

z y x

y z x

− − −

−

ω ω ω
0

x y z

−
0

−

0

� (10)

Using the Picard iterative method to solve the quaternion
differential equation (9), its discrete form is given by:

	 q t q t() cos sin ()k k= +
 
 
 

   
   
   
∆ ∆ ∆Ω
2 2
ϕ ϕ

∆ϕ −1 � (11)

where ϕ = +α α+α2 2 2
x y z is the angular increment during

the sampling interval [tk tk−1,] , α ωi i= ∫t
t

k

k

−1

dt , i x y z= , , ,

and Ω = ()α α αx y z
T .

The transformation matrix from the body frame to the
navigation frame, represented using quaternions, is given
by:

2

Dean&Francis

C q q q q q q q q q q q qn
b = − − + − +

 
 
 
 
 

q q q q q q q q q q q q0 1 2 3 1 2 0 3 1 3 0 2

2() 2()
2() 2()

2 2 2 2+ − − + −

q q q q q q q q q q q q1 3 0 2 2 3 0 1 0 1 2 3

1 2 0 3 0 1 2 3 2 3 0 1

+ − − − +

2() 2()
2 2 2 2

2 2 2 2

 (12)

Thus, the UAV attitude angles can be expressed using
quaternions as:

	










ψ

θ

φ =

= −

=

arctan

arcsin 2()

arctan

(

 

 
 

 
 
 

q q q q

q q q q

0 1 2 3

2()
2 2 2 2

q q q q

0 1 2 3

2()
2 2 2 2

− − +

0 2 1 3

+ − −

q q q q

q q q q

0 1 2 3

0 3 1 2

+

+

) � (13)

3.3 Motion Target Visual Detection Method
Considering the requirements for target tracking in com-
plex environments and factors like UAV cost and pay-
load capacity, this paper adopts a stereo vision system
for detecting and locating moving targets. A neural net-
work-based model, trained using the YOLOv5 algorithm,
detects moving targets. The detection results are converted
into world coordinates to determine the target’s position.

3.3.1 Target Detection Algorithm Based on YOLOv5

To address target detection in complex environments, this
paper employs a detection scheme based on convolutional
neural networks (CNNs), which have significantly ad-
vanced image processing since 2012. Traditional methods,
reliant on manually designed features, lack robustness in
dynamic scenes. Learning-based detection methods are
categorized into two types: two-stage detection, offering
high precision through coarse detection and refinement,
and single-stage detection, which is faster by directly clas-
sifying each Region of Interest (ROI) as background or
target. YOLO (You Only Look Once) series is preferred
for its efficiency in multi-scale and multi-target tasks [8].
This paper utilizes YOLOv5 [9] for detecting moving tar-
gets, integrating pose detection post YOLO detection to
output final results.

Figure 1 YOLOv5 system diagram.

3

Dean&Francis

The YOLO algorithm divides an image into grid cells,
detecting targets via the cell containing the target’s center
point. It uses regression to determine the Bounding-Box
coordinates and confidence. YOLO’s network has two
main parts: the Backbone for feature extraction, pre-
trained on image datasets, and the Head for final detec-
tion. YOLOv5’s structure includes Input, Backbone,
Neck, and Output. Input employs Mosaic augmentation,
enriching the dataset by scaling and stitching images,
achieving good results with small Mini-batches on a sin-
gle GPU. The Backbone retains image information using
Focus, CSP, and SPP structures. CSP enhances learning
and reduces costs; SPP increases the receptive field. The
Neck generates feature pyramids for multi-scale object
handling, preserving positional and categorical informa-
tion.
The output generates anchor boxes with confidence
scores, target classes, and bounding box coordinates.
YOLOv5’s loss function has three parts: box regression
(mean squared error), object confidence (presence), and
classification (cross-entropy) The total loss function is
calculated as:
	 Loss box loss obj loss cls loss= + +ω ω ω1 2 3_ _ _ � (13)

where ω1 ​, ω2 , and ω3 ​ are weights for each component.

The box loss_ uses CIoU (Complete Intersection over
Union), calculated as:

	 box loss IoU v_ 1= − + +
ρ 2 (

c
b b

2

, gt) α � (14)

with IoU representing the intersection over union, b
and bgt as the center coordinates of predicted and ground

truth boxes, d b b= ρ 2 (, gt) as the Euclidean distance

between centers, c as the diagonal length of the smallest
enclosing box, α as a positive weight, and v measuring
aspect ratio similarity.

	 α =
(1− +IoU v

v
)

� (15)

	 v = −
π
4

2 (arctan arctan)
ω
h hgt

gt ω � (16)

To improve IoU , the width and height ratios are decom-
posed and separately discussed, resulting in the updated
loss:

	 box loss IoU_ 1= − + + +
ρ ρ ρ2 2 2(

c C C
b b b b h h

2 2 2

, , ,gt gt gt) (
ω

) (
h

)
� (17)

where Cω and Ch are the width and height of the small-

est enclosing box , and ω , ωgt , h , hgt are the widths
and heights of predicted and ground truth boxes. This
enhancement addresses the limitations of CIoU by incor-
porating width and height differences directly into the loss

calculation.
3.3.2 Implementing YOLOv5 Model in MATLAB

Here is a MATLAB script for implementing a YOLOv5
model for object detection, accompanied by comprehen-
sive English annotations:

4

Dean&Francis

Figure 2 YOLOv5 Model in MATLAB
This MATLAB script uses a YOLOv5 model for object
detection. It loads a pre-trained YOLOv5 model and pro-
cesses an input image to match the model’s requirements.
The script then runs the model to predict bounding boxes,
confidence scores, and class labels for detected objects.
Results are visualized by overlaying bounding boxes and
labels on the input image, which is saved as an image file,
ensuring efficient object detection and visualization using

MATLAB.

3.4 Feedback Control Path Planning
3.4.1 Applying Feedback Control to Path Planning

Feedback control measures a variable, compares it to a
target, and adjusts inputs to minimize error, continuously
maintaining the desired state (Figure 3).

Figure 3 Feedback control loop.
In UAV path planning, feedback control ensures the UAV accurately follows a planned trajectory despite disturbanc-

5

Dean&Francis

es. The process involves:
(1) Measurement: Onboard sensors measure the UAV’s
current position, velocity, and state variables.
(2) Comparison: These values are compared to the desired
trajectory setpoints.
(3) Error Calculation: The difference (error) between mea-
sured and desired values is computed.
(4) Control Decision: Based on the error, the control sys-
tem adjusts UAV control inputs (motor speeds, control
surfaces).
(5) Implementation: Control inputs are adjusted to mini-
mize the error, maintaining the UAV on the desired path.
3.4.2 MATLAB Implementation for Path Planning
Based on YOLOv5 Detection Results

This MATLAB script demonstrates feedback control for

UAV path planning using YOLOv5 detection results. It in-
volves generating a path from the detected target position
and using proportional control to navigate the UAV.
MATLAB Script Framework:
(1) Load YOLOv5 Detection Results: Load bounding box
coordinates and calculate the target’s center.
(2) Generate Path: Create a linear path from the UAV’s
initial position to the target using linspace.
(3) Implement Feedback Control: Apply proportional con-
trol to adjust UAV position based on error.
(4) Visualize Results: Plot the desired path, UAV trajecto-
ry, and target position to visualize adherence using feed-
back control.
As shown in Figure4:

Figure 4

6

Dean&Francis

MATLAB Script for UAV Path Planning Using Feedback
Control Based on YOLOv5 Detection Results
This script provides a streamlined framework for im-
plementing feedback control-based path planning using
YOLOv5 detection results in MATLAB. Adjust the con-
trol parameters and path generation logic as needed to
accommodate specific UAV dynamics and operational
requirements.

4. Results and Discussion
4.1 MATLAB Implementation of the Quadro-
tor UAV Feedback Control System
To build a comprehensive feedback control system for
a quadrotor UAV using MATLAB, the implementation
involves several key components as depicted in the pro-
vided diagram. Each component is crucial for achieving
stable and accurate control of the UAV.
As shown in the Figure 5:

Figure 5 Operation drone control architecture.
(1) Reference Path Generation
The reference path, serving as the desired UAV trajectory,
is generated using predefined waypoints or dynamical-
ly based on mission requirements. In MATLAB, this is
achieved by interpolating between waypoints to form a
smooth trajectory.
(2) Algorithmic Module
This module processes the reference path and generates
velocity commands based on the UAV’s current state and
additional information, such as obstacle locations. It in-
volves state estimation and control law computation.
(3) PID Controller
Responsible for minimizing the error between desired
velocity commands and actual UAV velocity, the PID
controller can be designed and tuned using MATLAB’s
Control System Toolbox.
(4) Quadcopter Dynamics
The dynamics of the quadcopter, including its response to
control inputs, are accurately modeled using a state-space
representation.
(5) Sensors and Feedback Loop
UAV sensors provide necessary feedback on the UAV’s
state, which is used to adjust control inputs. Sensor data is

processed to estimate the UAV’s position and velocity.
(6) Physical Model of Quadcopter
To implement the quadcopter’s physical model in MAT-
LAB, the following components are considered:
(1) Main Body Frame: Modeled using 6-DOF dynamic
equations to simulate the entire UAV.
(2) Tank: Attached to the bottom of the quadcopter, mod-
eled as a rigid body with variable mass and inertia.
(3) Sensors: Integrated with the UAV to gather environ-
mental data and provide feedback for the control system.

4.2 Experimental Results and Performance
Analysis
In this section, we present the experimental results and
performance analysis of the quadrotor UAV’s path track-
ing using a feedback control system. The UAV was tasked
with following a predefined path while maintaining stabil-
ity and accuracy. The figures provided illustrate the UAV’s
trajectory, Euler angles, and position errors over time.
4.2.1 Stability and Tracking Accuracy

The 3D plots (Figure 6, Figure 7, and Figure 8) show the
UAV’s path tracking over time. The UAV successfully

7

Dean&Francis

follows the predefined path, demonstrating high stability
and precise tracking capabilities. The Euler angles, which
represent the UAV’s orientation, remain stable throughout
the flight, indicating that the control system effectively
maintains the desired attitude.

Figure 6 Initial phase of UAV trajectory.

Figure 7 Mid-phase of UAV trajectory

Figure 8 Final phase of UAV trajectory.
4.2.2 Error Analysis

Graphs of position errors in X, Y, and Z axes reveal the
control system’s accuracy. Errors remain within limits,
demonstrating the PID controller’s robustness. The quater-
nion distance graph confirms stability, showing minimal
angular deviations during tracking.
4.2.2 Performance Metrics

1. Quaternion Distance: The quaternion distance graph
indicates that the UAV maintains a stable orientation with
minimal fluctuations. This metric is crucial for ensuring
the UAV’s precise maneuvering and overall stability.
Observed in Figures 9, 10, and 11.
2. Position Errors:
X Position Error: The error in the X position remains con-
sistently low, indicating accurate lateral control.
Y Position Error: The Y position error shows slight vari-
ations but stays within a manageable range, reflecting
effective longitudinal control.
Z Position Error: The Z position error is minimal, high-
lighting the UAV’s ability to maintain the desired altitude
accurately.
Observed in Figures 9, 10, and 11.

8

Dean&Francis

Figure 9 Position and orientation errors
during initial phase.

Figure 10 Position and orientation errors
during mid-phase.

Figure 11 Position and orientation errors
during mid-phase.

5. Conclusion
The experimental results confirm the feedback control

system’s effectiveness in ensuring stable and accurate path
tracking for the quadrotor UAV. The UAV follows the
predefined path with minimal deviations, and the control
system maintains stability under various conditions. Low
position errors and stable Euler angles demonstrate the
PID controller’s robustness and the system’s capability
for real-world scenarios. This analysis highlights the pro-
posed strategy’s potential for practical UAV applications,
including surveillance and search and rescue. Future work
will optimize control algorithms and extend capabilities
for more complex environments.

References
[1] Patrona F, Mademlis I, Tefas A, et al. Computational UAV
cinematography for intelligent shooting based on semantic visual
analysis[C]. 2019 IEEE International Conference on Image
Processing (ICIP), 2019: 4155-4159.
[2] Joubert N, Goldman D B, Berthouzoz F, et al. Towards a
drone cinematographer: Guiding quadrotor cameras using visual
composition principles[J]. arXiv preprint arXiv:1610.01691,
2016.
[3] Mellinger D, Kumar V. Minimum snap trajectory generation
and control for quadrotors[C]. 2011 IEEE international
conference on robotics and automation, 2011: 2520-2525.
[4] Bry A, Richter C, Bachrach A, et al. Aggressive flight
of fixed-wing and quadrotor aircraft in dense indoor
environments[J]. The International Journal of Robotics Research,
2015, 34(7): 969-1002.
[5] Deits R, Tedrake R. Efficient mixed-integer planning for
UAVs in cluttered environments[C]. 2015 IEEE international
conference on robotics and automation (ICRA), 2015: 42-49.
[6] Gao F, Wang L, Zhou B, et al. Teach-repeat-replan: A
complete and robust system for aggressive flight in complex
environments[J]. IEEE Transactions on Robotics, 2020, 36(5):
1526-1545.
[7] Redmon J, Divvala S, Girshick R, et al. You only look once:
Unified, real-time object detection[C]. Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016:
779-788.
[8] Jocher G. You only look once version 5[CP/OL]. [2022-12-
05], https://github.com/ultralytics/yolov5/tree/v6.0.

9

