
Dean&Francis

Leveraging Machine Learning: Advancements in Cheating Detection 
Strategies for Ensuring Fair Online Gaming Environments

Lexuan Zhang1,*, Yuhan Wei2, Yitong Zhou3

1Beijing Jiaotong University, Beijing, China, lexuanzhang@icloud.com
2Shijiazhuang Foreign Language School, Shijiazhuang, China, weiy93285@gmail.com

3Ohio State University, Suzhou, China, arcyiiizzz@gmail.com
Abstract:
Cheating detection in online gaming is a crucial challenge that affects the fairness and integrity of virtual environments. 
This literature review delves into the advancements made in the field of cheating detection, focusing on machine-
learning-based approaches and encrypted network traffic analysis. Various methodologies, including Support Vector 
Machines, Logistic Regression, and GPU acceleration, are explored in detecting cheating behaviors within different 
gaming scenarios. The review also examines the application of supervised learning techniques in Unreal Tournament 
III, showcasing their potential in identifying cheating instances. Additionally, the challenges posed by limited labeled 
data and covariate shifts in encrypted network traffic analysis are addressed through innovative solutions like the GCI 
framework. Insights into the interplay of data attributes and classification performance are provided, offering directions 
for future research. Overall, this review contributes to the understanding of cheating detection strategies and their 
implications for maintaining equitable and enjoyable online gaming experiences.
Keywords:- Machine Learning, Online Gaming, Fair, Cheating Detection

1. Introduction
With the rise and robust development of the gaming in-
dustry, an increasing number of people are experiencing 
excitement and pleasure from the competitive nature of 
games, particularly in multiplayer modes. Various compet-
itive mechanisms, such as leaderboards and scoring sys-
tems, have triggered individuals’ desire for victory. With 
each successive triumph, players’ excitement thresholds 
are elevated, leading people to gradually resist investing 
significant time and effort for a simple victory. Conse-
quently, the gaming cheating industry stealthily emerged 
alongside this trend, even giving rise to commercialized 
cheating systems, forming a series of exclusive cheating 
frameworks.
Dialectically speaking, the continuous development of 
gaming cheating systems underscores the need for en-
hanced network security. It indirectly reveals areas in 
game development that require refinement while also 
highlighting the ongoing optimization of cheating tech-
niques. However, it must be acknowledged that the ram-
pant growth of cheating practices significantly impacts 
players’ gaming experience by undermining fairness and 
introducing technical imbalances in multiplayer games.
In order to foster a positive cyclic atmosphere within 

the gaming industry, we should continuously optimize 
anti-cheating technologies. It’s worth noting that detect-
ing cheating behavior, due to its elusive nature, typically 
necessitates manual oversight. So we should focus our 
research efforts mainly on automatic identification tech-
niques.
This literature review is based on three papers that fo-
cus on the use of machine learning techniques to detect 
cheating in online games. In the first two papers, through 
different experimental methods, the researchers classified 
the data and created a cheating detection model using 
various supervised learning techniques such as logistic 
regression, decision trees, naive Bayes, random forests, 
neural networks, and support vector machines by collect-
ing game log data and pre-processing the data according 
to the established framework model of the anti-cheating 
system. The results of the study show that in most cases, 
the mentioned methods have a very high accuracy and 
provide some recommendations and analyses for online 
game developers. In addition, the third paper proposes 
a supervised learning approach to detect cheating based 
on encrypted network traffic. Due to limited training data 
labelling, the authors address this challenge by using rel-
ative density ratios to estimate the importance weights 
associated with training data instances. The authors also 

ISSN 2959-6157 

1



Dean&Francis

demonstrate the server-side scalability of their proposed 
approach using Apache Spark
and achieve better performance using GPU acceleration. 
They collected and empirically evaluated network traffic 
data from Counter-Strike games and showed that their 
approach significantly outperforms other benchmark ap-
proaches in detecting cheating behaviour. All three articles 
comment on the field of anti-cheating and provide experi-
mental models that have been validated for effectiveness, 
and present basic ideas for future directions in the devel-
opment and optimisation of anti-cheating techniques. The 
aim of this paper is to synthesise and further extend these 
findings by proposing a comprehensive framework to 
automatically detect cheating behaviours and guarantee a 
fair and positive gaming experience in online games.

2. Background
Online gaming has transformed into a global phenome-
non, engaging millions of players in immersive virtual 
environments. However, as the popularity of online games 
rises, so does the prevalence of cheating behaviors that 
undermine the integrity of these platforms. Cheating 
not only compromises the fairness of gameplay but also 
erodes the trust and enjoyment that players derive from 
the virtual worlds they inhabit. Understanding the motiva-
tions behind cheating and its repercussions on the gaming 
ecosystem is imperative in devising effective strategies to 
curb such behavior.
Players resort to cheating for various reasons. Compet-
itive pressures, the desire for in-game rewards, and the 
pursuit of social recognition drive some individuals to 
exploit vulnerabilities within the game mechanics. The 
allure of gaining an unfair advantage, whether through au-
tomated scripts, aimbots, or wallhacks, can be irresistible, 
leading players down a path that damages the gameplay 
experience for others. Cheating diminishes the sense of 
accomplishment, challenges the balance of the game, and 
alienates honest players, thereby undermining the very 
essence of fair competition and camaraderie that defines 
online gaming.
The impact of cheating extends beyond individual expe-
riences. Game developers are tasked with the formidable 
challenge of maintaining the integrity of their virtual 
universes. Cheating can introduce a negative spiral, as 
legitimate players become frustrated and may eventually 
abandon the game, leading to dwindling player commu-
nities and reduced revenues for developers. To counteract 
these negative outcomes, developers are compelled to 
invest resources into anti-cheating measures, diverting ef-
forts away from enhancing gameplay or introducing new 
features.

In light of these challenges, the application of machine 
learning techniques has emerged as a promising approach 
to combat cheating behaviors. The complexity and scale 
of online gaming environments make manual detection 
of cheating nearly impossible. Here, machine learning 
shines, offering the potential to analyze vast datasets, 
recognize patterns, and differentiate between normal and 
suspicious behavior. This technology-driven approach 
allows for the efficient identification of cheaters while 
minimizing the intrusion on players’ privacy and gaming 
experience.
In the pursuit of effective cheating detection methodolo-
gies, recent research has explored diverse avenues. Nota-
bly, the integration of machine learning algorithms, such 
as Support Vector Machines and Logistic Regression, 
holds promise in identifying cheating behaviors with high 
accuracy. These algorithms can decipher intricate patterns 
in gameplay data, providing insights that facilitate the de-
tection of anomalous activities.
Moreover, the evaluation of encrypted network traffic, as 
seen in the GCI framework, demonstrates an innovative 
response to the challenges of limited labeled data and 
distributional shifts. By leveraging the relative density 
ratio and GPU acceleration, researchers strive to improve 
the accuracy and scalability of cheating detection mech-
anisms. These advances collectively contribute to the 
ever-evolving landscape of cheating detection in online 
gaming.
In conclusion, the backdrop of cheating in online gaming 
is a complex interplay of motivations and consequences 
that extends beyond individual experiences. As the gaming 
community grapples with the pervasive issue of cheating, 
machine learning emerges as a formidable ally in main-
taining fair and enjoyable virtual environments. Through 
innovative methodologies and interdisciplinary research, 
the field advances toward a future where cheating be-
comes a rarity, preserving the essence of competition and 
camaraderie that defines the world of online gaming.

3. Behavioral-Based Cheating Detec-
tion in Online First Person Shooters 
Using Machine Learning Techniques
The original text[1] introduces a machine-learning-based 
method for detecting cheating in online games. The re-
search team developed an FPS game using the Unity3D 
game engine and performed data preprocessing by col-
lecting game logs. Subsequently, they created a cheating 
detection model using algorithms such as Support Vector 
Machines and Logistic Regression. Experimental results 
demonstrate that this method achieves high accuracy in 
both single and multi-class cheating detection. By ex-

2



Dean&Francis

clusively utilizing game logs for cheating detection, the 
approach avoids privacy infringement concerns, and the 
paper provides practical insights for game developers.
The process of combating cheating behavior in online 
games involves a series of interconnected steps, each 
contributing to an enhanced understanding of player in-
teractions and the identification of irregularities. Data 
collection was carried out through 18 distinct deathmatch 
games, characterized by a player employing cheating soft-
ware and another adhering to standard gameplay. This rich 
dataset served as the foundation for subsequent analyses.
Feature extraction played a pivotal role, where data was 
categorized into distinct time frames (10s, 30s, 60s, and 
90s). Employing the proven techniques of logistic regres-
sion and support vector machines (SVM), two prominent 
classifiers, yielded a comprehensive evaluation of player 

behavior. Leveraging both linear and radial basis function 
(RBF) kernels, SVM’s parameter optimization ensured the 
adaptability of the model’s soft boundaries.
The most crucial data table in this paper is Table 1. This 
table presents the results of testing three players using 
different models and frame sizes. The table is divided into 
three sections: Table 1(a) displays the number of instances 
collected for each frame size, Table 1(b) showcases the 
best results obtained using the models from the first three 
sections, and finally, Table 1(c) demonstrates the optimal 
outcomes achieved using the model from the fourth sec-
tion. Within Table 1(c), the author illustrates the detection 
accuracy for each cheating type and normal gameplay, 
with the authors selecting True Positive Rate (TPR) to 
capture the detection accuracy of each model when en-
countering unknown cheating types.

Table 1: Test Set Results
(a) Number of instances

Frame Size Number of instances
L AF Normal Total

30 59 41 58 158
60 29 24 32 85

(b) Accuracy results for Parts 1, 2 and 3
Part Best Selected Results

Accuracy Frame 
Size Classifier

1 78.8% 60 SVM-L
2 94.1% 60 SVM-RBF
3 98.8% 60 SVM-L

(c) Accuracy results for Parts 4

Cheat Type

Best Selected Results

TPR for L
TPR 
for 
AF

TPR for 
Normal Frame Size Classifier

L 96.6% 2.4% 100% 60 SVM-RBF
AS 100% 0% 100% 60 Both
AM 89.7% 0% 100% 60 SVM-RBF
SA 89.7% 0% 100% 60 Both
AF 55.2% 100% 96.9% 60 SVM-L

According to the analysis of the results in Table 1(c), the 
SVM-L and SVM-RBF models, along with data from 
frame sizes 30 and 60, yield the best cheating detection 
outcomes. For the ”Aimbot” cheating type, the most accu-
rate feature is ”Mean Aim Accuracy,” which consistently 

ranks highly across different frame sizes. Regarding the 
”Auto-Fire” cheating type detection, the most informative 
features are ”Fire-on-Visible” and ”Fire-on-Aim,” as these 
capture instances of cheating behavior where firing occurs 
immediately upon having a target in the crosshair, as high-

3



Dean&Francis

lighted by the authors.
The setting of detection thresholds emerged as a critical 
element, guided by a nuanced interplay of model accuracy 
and developer policies. In the absence of labeled data, this 
study creatively addressed the challenge by proposing a 
flexible threshold approach. As an example, a 60-second 
time frame and a 50% threshold were employed, a strate-
gy adaptable to both real-time and offline scenarios.
Evaluating the efficacy of the proposed cheating detection 
methods involved comprehensive testing across multiple 
players and time frames. SVM-L and SVM-RBF classifi-
ers, along with 30-second and 60-second intervals, were 
employed. The true positive rate (TPR) provided valuable 
insights into the detection accuracy across various forms 
of cheating and normal gameplay, thus affording a thor-
ough comprehension of the model’s performance.
By assimilating the advances from various fronts, this 
study achieved significant progress. The inclusion of 
manifold feature learning, utilization of diverse classifiers 
such as logistic regression and SVM, and an encompass-
ing experimental design adapted to commercial online 
games contributed to the overall evolution of cheating de-
tection methodologies. Moreover, the introduction of flex-
ible threshold settings allowed for pragmatic adjustments, 
enhancing the model’s adaptability in addressing different 
forms of cheating.
In summary, this study represents a substantial advance-
ment in the realm of cheating detection. Leveraging a ho-
listic approach that combines intricate feature extraction, 
precise classifier selection, pragmatic threshold settings, 
and real-world application, this research significantly 
improves the accuracy, adaptability, and applicability of 
cheating detection methods. As compared to previous 
works, this study’s comprehensive treatment of feature se-
lection, diversified classification employment, comprehen-
sive experimental design, and adjustable threshold strate-
gies collectively contribute to a more robust and effective 
cheating detection paradigm. Through these integrated 
methodologies, the study holds profound implications for 
the advancement of fair and enjoyable online gaming ex-
periences.

4. A Cheating Detection Framework 
for Unreal Tournament III: A Machine 
Learning Approach
This paper[4], using Unreal Tournament III as a medium, 
introduces a novel framework for automatically detecting 
cheating behaviors through supervised learning techniques 
within the conceptual domain of machine learning.
The framework consists of three main components: (i) an 
extended game server for collecting game data, (ii) a pro-

cessing backend responsible for preprocessing data and 
detecting cheating behaviors, and (iii) an analysis frontend 
for result analysis.
Through experimental analysis involving three human 
players, three game maps, and five different supervised 
learning techniques, the paper also presents the specific 
method of training the training set using default parameter 
configurations. In the experiment, five different supervised 
learning methods, including decision trees, naive Bayes, 
random forests, neural networks (backpropagation algo-
rithm), and support vector machines, were employed to 
detect cheating behaviors in the game Unreal Tournament 
III, confirming the effectiveness of the framework.
The results show that all supervised learning techniques 
are capable of correctly classifying nearly 90 percent of 
the samples in the test examples. In this experiment, the 
author uses data from training and test sets to evaluate 
the performance of different methods. By comparing the 
classifier’s classification results for samples in the test set, 
their accuracy and misclassification can be determined. In 
relation to the paper’s results and relevant discussions, the 
paper primarily presents the statistical indicators calcu-
lated for each frame of data. These indicators encompass 
various aspects of data, such as players’ shooting frequen-
cy when the target opponent is visible, aiming accuracy 
during shooting, types of weapons used, and the health 
status of target enemies. Each frame of data is labeled 
based on whether a player employs cheating systems, with 
players using cheating systems being marked as cheating 
instances. In conclusion, the content covers framework in-
troduction, application of supervised learning techniques, 
experimental design, performance evaluation, and statisti-
cal data analysis.

4.1 . Unreal Tournament III
Unreal Tournament III is a very popular commercial 
first-person shooter with impressive rendering capabilities 
based on the Unreal Engine, which also utilizes NVDIA’s 
PhysX engine to accurately simulate the physics and dy-
namics of the game world. UT3 was developed using the 
Unreal Script programming language, a Java-like scripting 
language interpreted by the Unreal Engine.
A two-tier architecture is a client-server architecture in 
which the client application connects and interacts direct-
ly with the server. This architecture usually consists of a 
front-end client and a back-end server and has the distinct 
advantage of being flexible: the two-tier architecture al-
lows for greater flexibility in customizing and configuring 
the application, as both the client and the server can be 
customized and optimized as needed. This makes the 
application more adaptable to specific needs and require-
ments.

4



Dean&Francis

4.2 . Commercial Cheating Systems
The paper begins by describing two important features of 
a cheating system: the aiming and firing assistance system 
and the radar system. The aiming and shooting assistance 
system includes auto-targeting and auto-firing features. 
Auto-targeting helps players target more easily and in-
cludes advanced features such as slow targeting, visible 
viewpoints, and targeting for different parts of the body. 
Autofire is a relatively simple mechanism that automati-
cally fires when a suitable target appears under the aiming 
star. Radar systems are a common feature in commercial 
cheat systems, including 2D radars and
3D radars that show the location of all other players on 
the map.
In this article, the authors also mention that commercial 
cheat systems often provide some manual assistance fea-
tures, such as the automatic location of opponents and ex-
tended information about their status. However, the source 
code of commercial cheat systems is not available and 
cannot be extended or modified. In addition, the licensing 
policies of commercial cheating systems may limit the ex-
perimental setup for data collection. Therefore, the authors 
chose to develop their own cheating system that includes 
the main features provided by the commercial system.

4.3 . Supervised Learning Techniques
Decision trees[10] use the tree induction algorithm in 
RapidMiner[7], using gain ratio as a splitting criterion; 
Naive Bayesian classifiers[8] use Laplace correction to 
prevent the effect of zero probability; Random forests[2] 
are made up of ten random trees, using gain ratio as a 
splitting criterion; Neural networks[5] use a feedforward 
neural network with a single hidden layer, and the training 
algorithm is backpropagation, with the number of hidden 
nodes set to (number of attributes + number of catego-
ries)/2+1 and sigmoid activation function is used for all 
nodes; Support Vector Machine[11] uses JMySVMLearn-
er in RapidMiner and internally uses dot kernel function 
for training.

4.4 . Experiment Design
This section partially describes in detail the information 
related to the log collection in the experiment, including 
the participants, number of matches, map selection, AI 
settings, and the enablement and settings of the cheating 
system.
Logs were collected from eight matches on two different 
maps (Biohazard and Rising Sun) involving two players 
(an expert player and a novice player) in the experiment. 
Each player played two 20-minute deathmatch matches 
against a CPU-controlled AI on each map. One of the 
matches was played against a novice AI (i.e., the easiest 

difficulty in the game), while the other was played against 
a God-level AI (i.e., the hardest difficulty in the game). 
During each match, players were given the option to en-
able or disable the cheat system as they wished. However, 
they were asked to play the game for roughly the same 
amount of time with and without the cheat system en-
abled. In all experiments, the settings for the cheat system 
were the same, i.e., players could not change the settings; 
aim assist was enabled, and slow aiming was turned on.
The final section of the experimental design section focus-
es on the author’s construction of a test set from a com-
pletely new set of logs to obtain an unbiased and reliable 
assessment of the performance of the learned model. The 
authors collected logs from 39 matches involving three 
different maps and three different levels of human play-
ers. Each match was a two-minute deathmatch between 
the human player and a CPU- controlled AI. During these 
matches, players could not turn the cheat system on or off; 
in 18 of the matches, the cheat system was active, while in 
the remaining 21 matches, the cheat system was inactive. 
When the cheating system was active, the configuration 
was exactly the same as when the training set was previ-
ously constructed. Finally, the authors preprocessed the 
collected data by extracting 30 seconds of data from each 
recorded match to construct a test set containing 39 exam-
ples.

4.5 . Detailed Description of the Experimen-
tal Results– The Relationship Between the 
Discrimination of False Positives and False 
Negatives and the Dependency Between Data 
Attributes
In the process of processing data, it is extremely important 
to correctly identify and classify individual specific data 
points and to correctly associate them, which will affect 
the judgment of experimental results and data reporting 
to a certain extent. The authors explore the relationship 
between false negatives and positives and data attributes 
by analyzing and discussing the results of a cheating de-
tection experiment.
Firstly, the definition: in this experiment, we define false 
negatives to mean the misclassification of real cheating as 
no cheating and false positives to mean the misclassifica-
tion of no cheating as cheating.
The experimental results show that it is possible to have 
false positives when using different techniques for cheat-
ing behavior detection. In this case, a false positive refers 
to misclassifying an example of actually honest behavior 
as cheating. However, in the reported confusion matrix, 
only the plain Bayesian classifier did not misclassify 
any of the samples without cheating behaviour as having 
cheating behaviour (2.B), i.e., it did not produce false 

5



Dean&Francis

positives. In contrast, the support vector machine reported 
one false positive misclassification in the confusion matrix 

with the same overall accuracy (2.E).

Table 2: confusion matrix results
(A)

Predicted Class
True Class

Cheater Honest
Cheater 17 2
Honest 1 19

(B)

Predicted Class
True Class

Cheater Honest
Cheater 17 0
Honest 1 21

(C)

Predicted Class
True Class

Cheater Honest
Cheater 17 1
Honest 1 20

(D)

Predicted Class
True Class

Cheater Honest
Cheater 18 4
Honest 0 17

(E)

Predicted Class
True Class

Cheater Honest
Cheater 18 1
Honest 0 20

False positives may be more critical than misses when 
considering the practical demands of the problem. Since 
the goal of a cheat detection system is to identify cheaters 
and prevent them from accessing online gaming services, 
a false positive can result in an innocent player being mis-
taken for a cheater and prevented from using a service for 
which he/she may have paid a fee.
We want to know where to start to improve the accuracy 
of our experimental results by exploring what factors 
false negatives and positives are directly related to so that 
we can begin to optimize the technique. False positives 
represent a strong dependency on data. This is because, 
in cheating detection, it is not only the characteristics of 
individual data points that need to be considered but also 
the correlation between data points. In a given situation, 

misclassifying an example of honest behavior as cheating 
may be due to the fact that the features or attributes of a 
particular data point are similar to those of the cheating 
behavior but do not represent cheating in its entirety.
To summarise, for the relationship between false nega-
tives and data attributes, from the experimental results, the 
performance of the plain Bayesian classifier is relatively 
good, suggesting that the interdependence between data 
attributes is not very significant in its impact.
In order to solve this problem, researchers need to careful-
ly analyze the relationship between the data and determine 
which features or attributes may lead to the appearance of 
false positives. By further optimizing the classification al-
gorithm, the occurrence of false positives can be reduced, 
and the accuracy and reliability of the cheating detection 

6



Dean&Francis

system can be improved.

4.6 . Summary
This study presents a framework for the automatic detec-
tion of cheating behavior in Unreal Tournament III. The 
framework constructs five different decision models using 
supervised learning techniques, including decision trees, 
plain Bayes, random forests, neural networks, and support 
vector machines. The performance of these five learning 
models is compared by applying them to a previously 
collected test dataset. It was shown that all supervised 
learning techniques were able to correctly classify nearly 
90 percent of the test samples, successfully testing the 
framework’s effectiveness.

5. GCI: A Gpu-Based Transfer Learn-
ing Approach For Detecting Cheats of 
Computer Game
The primary focus of this paper[6] is to use supervised 
machine-learning techniques for online game cheating de-
tection in encrypted network traffic. The authors propose 
a method that addresses the challenge of limited labeled 
data and covariance shift during model training by esti-
mating important weights associated with training data 
instances through relative density ratios. They also intro-
duce a technique to learn model parameters automatically 
for estimating relative density ratio from existing data.
Supervised machine learning techniques are used for on-
line game cheating detection in encrypted network traffic 
because they provide a generic solution for most multi-
player games. By analyzing the encrypted network traffic, 
the author aims to detect cheating behaviors and distin-
guish them from normal gameplay. This approach is ben-
eficial because it does not rely on the availability of the 
game’s source code and can be applied to various games 
without the need for game-specific detection mechanisms.

To handle the massive traffic data consistently encoun-
tered on the server side, the authors employed a distrib-
uted computing framework, Apache Spark, to implement 
their approach. The authors further explored using Graph-
ics Processing Units (GPUs) as an alternative hardware 
solution to accelerate the performance of the cheating 
detection mechanism. By collecting network traffic of 
players in the Counter-Strike game, they concluded that 
their innovative approach significantly outperforms other 
benchmark cheating mechanisms.
The structure of their GCI[3] (Game Cheating Identifica-
tion) framework is depicted in Fig 1. Their training dataset 
includes game traffic information from players, marked 
as either ’ cheating’ or’normal’. They intend to identify 
cheaters using a test set filled with game traffic data from 
various players. This test set is then randomly split into 
two segments.
One segment collaborates with the training set to formu-
late the classification model, while the other is utilized to 
assess the effectiveness of their methodology. Initially, 
features are extracted from the gaming traffic data pro-
vided by players. They believe there’s a distributional 
disparity, termed co-variate drift, between the training and 
test sets, likely arising from sampling variations. With this 
covariate drift in mind, they apply a Gaussian kernel mod-
el to gauge the relative density ratio linked to the training 
data. They recognize that using instance weights can offset 
the distributional biases in training data, making trained 
classifiers with weighted samples more adept at general-
izing to test instances. Consequently, their GCI method 
incorporates weighted training samples for predicting test 
sample labels. Their procedure culminates in creating a 
bias-modified classifier, which then uses its predictions to 
pinpoint potential cheaters in the subsequent test data.

Figure 1: confusion matrix results
The first step is feature extraction, which uses the method-
ology called BIND introduced[9]. This paper utilizes the 

BIND method to extract features solely from the packet 
header information in encrypted packet traces. The main 

7



Dean&Francis

objective is to discern patterns in network traffic to detect 
cheating behaviors by examining consecutive packets 
for potential dependencies. BIND investigates packet se-
quences, such as single bursts (or uni-bursts) and bursts 
(two neighboring uni-bursts going in opposite directions). 
Bursts can be from client to server (uplink) or from server 
to client (downlink), as shown in Fig 2. Bursts possess 
attributes like size, time, and direction, where size is 
the combined lengths of its packets, and time is the gap 
between the first and last packet timestamps in a burst. 
Features from Bi-Bursts typically fall into four groups: 
Dn-Up-Burst size and time and Up-Dn-Burst size and 
time. Each trace yields distinct tuples that capture these 
four categories. Both Dn-Up and Up-Dn categories define 
tuples based on adjacent uni-burst sequences in terms of 
their size and time. These features are merged to create 
a comprehensive feature array from each trace. Multiple 
traces represented this way make up the training and test-
ing sets. Fig 2 showcases a trace with uplink and down-
link sequences, explaining how sizes and times of bursts 
are determined and represented in tuples.
As mentioned before, covariance shift is another chal-
lenge because the assumption that the training set and test 

set have similar distributions may not hold true in many 
scenarios in the real world. The GCI’s Covariate Shift 
Adaptive (CSA) relative density ratio estimation using a 
Gaussian kernel model can be used to address this issue. 
As mentioned before, covariance shift is another chal-
lenge because the assumption that the training set and test 
set have similar distributions may not hold true in many 
scenarios in the real world. The GCI’s Covariate Shift 
Adaptive (CSA) relative density ratio estimation using a 
Gaussian kernel model can be used to address this issue. 
This statistical method has the potential to recognize pat-
terns and anomalies in the in-game behavior of players. 
By analyzing gameplay data with the Gaussian kernel, 
inconsistencies associated with the aforementioned cheats 
like Aim-bot, Speed-hack, and Wall-hack can be high-
lighted. Essentially, the Gaussian kernel works by trans-
forming the input data into a higher-dimensional space, 
enabling a clearer separation of cheat-induced behaviors 
from genuine gameplay patterns. Thus, by mapping game 
behaviors onto this model, the system can effectively 
identify and isolate instances of cheating, ensuring a fair 
play environment.

Figure 2: confusion matrix results
In the referenced study, the GCI framework was used on 
the server side to detect cheat by encrypting the game’s 
network traffic. Three key rationales underpinned this 
decision. Firstly, the encryption provided a game-agnostic 
cheat detection approach, as deciphered traffic inherently 
engaged game-specific variables. Secondly, encrypted 
traffic acted as an initial checkpoint before delving into 
more detailed and time-intensive detection methods. Last-
ly, given the proprietary nature of most games, encrypted 

traffic facilitated a simpler evaluation process. Although 
the mechanism delineated in the study isn’t confined to a 
specific game, its server-side construction processes a vast 
amount of traffic data from diverse player cohorts. Such 
extensive data processing can potentially strain memory 
and overall performance. To counteract these challenges, 
the study’s authors employed Apache Spark, enhancing 
the processing speed for the task.
Researchers aim to harness the general-purpose program-

8



Dean&Francis

ming capabilities of GPUs to establish an economical yet 
scalable cheat detection solution for MMOGs. Modern 
Graphics Processing Units (GPUs) have proven instru-
mental in en- hancing performance across numerous 
real-world applications, presenting an avenue for cost-ef-
fective parallel processing. By capitalizing on the GPUs’ 
superior memory bandwidth and parallel processing capa-
bilities, there is a notable reduction in the computational 
load on the CPU. The most time-consuming components 
of the researchers’ methodology encompass parameter 
learning and hyper-parameter estimation for the estimator. 
The hyper-parameter values of the SVM model are refined 
through a comprehensive grid search, focusing partic-
ularly on parameters like the regularization coefficient, 
which helps strike a balance between decision boundaries 
and misclassification. For enhanced processing efficiency, 
ThunderSVM, a GPU-optimized toolkit, is integrated. 
This toolkit is specifically tailored for SVM applications, 
strongly emphasizing algorithmic parallelization and 
memory optimization, ensuring a notable reduction in op-
erational run-time.
In conclusion, this paper proposes a supervised machine 
learning approach called GCI (Game Cheating Identifica-
tion) to detect cheating in MMOGs during gameplay. The 
authors address the challenge of limited labeled data by 
utilizing the relative density ratio and developing a tech-
nique for automatic parameter estimation. The scalability 
of the approach is demonstrated using Apache Spark 
for server-side cheat detection, and the performance of 
GPU-based implementation is compared with Spark and 
baseline approaches. Empirical evaluation on real-world 
network traces from Counter-Strike shows significant im-
provement in cheat detection compared to other methods. 
The feature extraction methodology, BIND, is used to 
capture patterns in network traffic and identify cheating 
behavior.

6. Conclusion
In the realm of cheating detection within online gaming, 
the studies reviewed have collectively illuminated sev-
eral influential contributions. The introduced methods 
and frameworks offer valuable insights into tackling the 
persistent challenge of identifying and mitigating cheating 
behaviors in diverse gaming environments. These findings 
not only advance the field of cheating detection but also 
hold implications for the broader landscape of maintaining 
fairness and integrity in online gaming experiences.
The presented research outlines the efficacy of ma-
chine-learning-based techniques in identifying cheating 
behaviors within the context of online games. By employ-
ing approaches like Support Vector Machines and Lo-

gistic Regression, re-markable accuracy rates have been 
achieved across various forms of cheating and gaming 
scenarios. The utilization of game logs for detection pur-
poses highlights the potential for practical anti-cheating 
solutions that respect player privacy while effectively ad-
dressing developers’ concerns.
The comprehensive approach outlined for Unreal Tour-
nament III demonstrates the applicability of supervised 
learning techniques in detecting cheating instances. The 
integration of distributed computing frameworks and the 
exploration of GPU acceleration underscore the adaptabil-
ity and scalability of these methodologies, aligning them 
with the needs of real-world server-side processing.
Furthermore, in the domain of encrypted network traffic, 
the literature provides insights into addressing limited 
labeled data and the challenge of covariate shift. The pro-
posed GCI framework introduces an innovative solution 
through relative density ratios, enabling more accurate 
training data instance weighting. The incorporation of 
GPU-based acceleration and parameter learning offers 
efficient cheating detection mechanisms that outperform 
benchmark methods.
The studies reviewed also shed light on the interplay 
between different data attributes and their influence on 
classification performance. This understanding provides 
valuable directions for future enhancements in detection 
accuracy and reliability. By addressing practical challeng-
es associated with encrypted traffic analysis, the reviewed 
research contributes to the broader discourse on preserv-
ing fairness and transparency in online gaming environ-
ments.
To summarize, the literature explored in this review col-
lectively advances the field of cheating detection within 
online gaming. The methodologies and insights shared 
offer practical solutions, laying the foundation for more 
robust anti-cheating mechanisms. Through these contribu-
tions, game developers, researchers, and gaming commu-
nities are better equipped to ensure equitable and enjoy-
able experiences for players across various online gaming 
platforms.

Acknowledgment
We extend our sincere gratitude to Professor William 
Nace for his invaluable guidance and support throughout 
the development of this literature review. Professor Nace’s 
expertise, insights, and mentorship have greatly enriched 
our understanding of the field of cheating detection in on-
line gaming. His thoughtful feedback and encouragement 
have been instrumental in shaping the direction and con-
tent of this review. We are truly grateful for his dedication 
and contributions, which have significantly contributed to 

9



Dean&Francis

the quality and depth of this work.

References
[1] Hashem Alayed, Fotos Frangoudes, and Clifford Neu-man. 
“Behavioral-based cheating detection in online first-person 
shooters using machine learning techniques”. In: 2013 IEEE 
conference on computational intelligence in games (CIG). IEEE. 
2013, pp. 1–8.
[2] Leo Breiman.“Random forest, vol. 45”. In: Mach Learn 1 
(2001).
[3] B. Dong et al. “GCI: A transfer learning approach for 
detecting cheats of computer game”. In: Proc. IEEE Int. Conf. 
Big Data. 2018, pp. 1188– 1197.
[4] Luca Galli et al. “A cheating detection framework for unreal 
tournament iii: A machine learning approach”. In: 2011 IEEE 
Conference on Computational Intelligence and Games (CIG’11). 
IEEE. 2011, pp. 266–272.
[5] Simon Haykin. “Neural Networks: A Comprehensive 

Foundation, MacMillan College Publishing Co”. In: New York 
(1994).
[6] Md Shihabul Islam et al. “GCI: A GPU-Based Transfer 
Learning Approach for Detecting Cheats of Computer Game”. 
In: IEEE Transactions on Dependable and Secure Computing 
19.2 (2020), pp. 804–816.
[7] Ingo Mierswa et al. “Yale: Rapid prototyping for complex 
data mining tasks”. In: Proceedings of the 12th ACM SIGKDD 
international conference on Knowledge discovery and data 
mining. 2006, pp. 935–940.
[8] Tom M Mitchell. Machine learning. 1997. [9] K. Al-Naami 
et al. “Bimorphing: A bi-directional bursting defense against 
website fingerprinting attacks”. In: IEEE Trans. Dependable 
Secure Comput. (2019).
[10] RC Quinlan.“4.5: Programs for machine learning morgan 
Kaufmann Publishers Inc.”. In: San Francisco, USA (1993).
[11] Bernhard Scholkopf and Alexander J Smola. Learning with 
kernels: support vector machines, regularization, optimization, 
and beyond. MIT Press, 2018.

10




