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Abstract:
Fires have been one of the most common disasters threatening human lives. The location of a fire station is critical to 
firefighting and saving people as well as properties. This paper discusses the situation of finding an optimal location for a 
fire station in a newly built city. In addition, this paper aims to explore the applications of gradient descent optimization 
in practical problems. Two gradient descent algorithms are used to minimize the average response time for a fire call. 
The model for the average response time is built step by step. The first part considers the fire frequency distribution in 
the area only. The second part adds a weight to each box based on the population and wealth distribution. In the third 
part, the spread of fires is taken into consideration, and we use the penalty method to convert this constrained problem 
into an unconstrained one.
Keywords:  Gradient descent, Penalty method, Optimal location.

1 Introduction
Gradient Descent is one of the most commonly used 
methods for solving unconstrained optimization prob-
lems. It can be used to solve model parameters in machine 
learning algorithms by minimizing the loss function. It in-
volves repeatedly moving a point on a curve in the oppo-
site direction to the gradient at that point for a chosen step 
size. Conversely, if we need to solve for the maximum 
value of a function, then we can add a negative sign to the 
function and try to minimize the new function. In machine 
learning, two gradient descent methods have been devel-
oped based on basic gradient descent methods, namely the 
random gradient descent method and the batch gradient 
descent method.
Gradient Descent Optimization (GDO), also known as the 
steepest descent method, was proposed by French mathe-
matician Augustine Louis Cauchy in 1847. It is one of the 
most classic and simple first-order methods in optimiza-
tion methods. In the first decade of the 20th century, op-
timization algorithms such as stochastic gradient descent 
showed amazing performance for large-scale problems. 

Specifically, second-order stochastic gradient and aver-
aged stochastic gradient are asymptotically efficient after 
a single pass on the training set [1]. A simple warm restart 
technique for stochastic gradient descent is proposed to 
improve its anytime performance when training deep neu-
ral networks in 2016 [2]. In the research in 2020, stochas-
tic gradient descent was applied with a linear regression 
algorithm in a machine‐learning environment for predict-
ing biomass higher heating value [3].
The purpose of this paper is to discuss the real-world ap-
plications of optimization algorithms and apply gradient 
descent to a real-world problem. Considering the hazards 
of fire accidents, which often happen without warning, our 
group think of the situation where city planners plan to 
build a fire station in a newly built city. This paper intro-
duces the gradient descent algorithm as a numerical meth-
od to determine the optimal location of the fire station in 
order to minimize the average time for fire trucks to travel 
from the fire station to a fire location.
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2 Unweighted
2.1 Dataset
To find out the optimal location for a fire station, our 
group created a 12*12 map for a virtual city based on the 
layout of a district in Beijing and a fire distribution chart 
considering seven types of land. As shown in Figure 1, 
in the map, r stands for residential areas, i for industrial 
areas, w for woods, f for farmlands, c for crowded areas 
(commercial areas and transport), b for landfill sites, and o 
for others.

Figure 1: Map of the city

Figure 2: Fire distribution chart
Then, we generate the fire frequency distribution in the 
city. We assume that the total number of fires in the region 

per year is 300. According to the proportion of fires (see 
Figure 2), happening in different places, we calculated the 
number of fires in each type of land. After this, seven ran-
domized attempts are used to determine the count of fire 
frequency for each grid based on regions by selecting ran-
dom grids. The total number selected is the fire frequency. 
Figure 3 shows the final results of this portion.

Figure 3: Fire frequency distribution
2.2 Modelling
To optimize the position of the fire station, the total time 
for the fire station to reach each grid should be minimized. 
We assume the speed of the fire trucks is constant.
The function to calculate the response time of a fire truck 
for a fire is given by
T r= +3.2 1.7 ,0.91

where T is the response time and r is the distance between 
the station and the fire.[4] This formula can be understood 
intuitively. 3.2 is the time the fire truck gets ready to set 
out. 1 / 1.7 is the speed of the fire truck, and the exponent 
0.91 indicates that the distance is nearly a linear function 
of time.
To simplify calculations, we divide the 12*!2 grid into 36 
2*2 smaller grids. We sum up the number of fires in each 
smaller grid and calculate the distance from the center of 
each grid to the fire station. The origin (0, 0) is at the bot-
tom left corner.
Therefore, the average response time for a fire in the area 
is

T = +3.2 1.7 ,
∑i j

i j i i i
= =
= =
12, 12 2 2
1, 1 n x x y y× − + −(

s
)2 2( )

0.91

where ni  is the number of fires in each smaller grid, (x, y) 
is the position of the fire station, ( x yi i, ) is the coordinate 
of the center of a 2*2 grid and s is the total number of 
fires in the whole city. Note that this function is a strong 
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convex function. In the next two sections, we will use two 
gradient descent algorithms to minimize this function.

2.3 Solving the model using gradient descent 
with momentum
This model uses momentum and self-adjusted learning 
rate to calculate the optimal location of the fire station us-
ing gradient descent. The gradient is calculated as
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The same also goes for ∂
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f
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. To use momentum, a velocity 

vector is added to keep track of momentum of the “object”. 
The learning rate also changes according to previous gra-
dients in the algorithm. The overall function for the algo-
rithm is:
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∂
∂
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Rho is 0.9 in the program and epsilon is 10−8 . The learn-
ing rate is changed by dividing the initial learning rate 
with the accumulated sum of previous gradients’ square 
value. The algorithm uses iterations to find the optimal 
solution, and the iteration ends when the f x y( , )  value 
changes by less than 10−8  compared to the previous one. 
The use of momentum can bring advantages to the func-
tion by making the function converge faster as the func-
tion has a previously increased amount of change as ve-
locity. However, this algorithm is more suited to functions 
that have a long semi-major axis. The use of learning rate 

adjustment can also make the function converge faster 
since the learning rate determines how far and fast the 
current position goes.

2.4 Solving the model using gradient descent
This method uses self-adjusted and solved step-length 
to make convergence to solution faster. To calculate the 
best step length, during every iteration, we differentiate 

f x m y m( , )− −
∂ ∂
∂ ∂
f f
x y

, where m is the step length, with 

respect to m:

h f x m y m= − −
dm x y
d f f 

 
 

∂ ∂
∂ ∂

, .

We let h equal zero and solve the equation using python 
with an initial guess of 0.4. The algorithm then finds a nu-
merical solution for the variable m that satisfies the equa-
tion represented by h.
m float nsolve h m verify False= =( ( , ,0.4, .))
The iterations end when the magnitude of the gradient is 
small enough, e.g., m <10−9 . Overall, this algorithm is 
also aimed at making the function converge faster to the 
optimal solution. The algorithm’s use of numerical solve 
can decrease the iterations required to reach the solution, 
sometimes smaller than the first model. Both models give 
an answer (6.906,6.238) for the coordinate of the fire sta-
tion.

3 Weighted
In this part of the problem, we consider another two fac-
tors critical to the location of a fire station, population 
and wealth distributions. For an area with high density of 
population and wealth, we multiply the fire frequency by a 
large weight, meaning that we give higher priority for that 
area.
We generate the weight distribution diagram in the fol-
lowing steps:
Step 1: Rate the population and wealth densities of each 
box on a scale of 1-5 and 1-6, respectively, based on the 
relative position of the box in the whole area. For both 
population and wealth, 1 indicates the highest density, as 
shown by Figure 4 and Figure 5.
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Figure 4: Wealth density ratings

Figure 5: Population density ratings

Step 2: Use a computer to randomly generate the corre-
sponding population and wealth density of each box ac-
cording to the following standards (Table 1):

Table 1: population and wealth densities standard

Population scale Population density /1000 
persons Wealth scale Wealth density /billion RMB

1 9-11 1 9-11
2 7-9 2 7-9
3 4-7 3 5-7
4 2-4 4 3-5
5 0-2 5 1.5-3
/ / 6 0-1.5

Step 3: Add the population and wealth densities of each 
box together, and multiply the sum by 1000, as shown by 

Table 2.
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Table 2: sums of population and wealth densities
524 290 269 496 532 402 480 558 264 350 0 0
805 550 534 515 772 708 837 861 1037 466 0 0
360 320 281 536 932 1413 1300 1415 908 553 0 0
180 370 436 517 817 1641 1800 1614 946 586 0 0
230 440 514 393 838 1643 2115 1550 729 605 340 236
170 190 30 40 882 1571 1918 1597 913 555 296 251

0 0 0 40 1025 1238 1440 1332 933 417 451 140
0 0 0 360 430 979 879 775 947 426 672 474
0 0 0 40 0 349 473 409 528 461 372 370
0 0 0 0 0 0 120 650 457 353 361 180
0 0 0 0 0 0 110 1074 0 0 0 180
0 0 0 0 0 0 120 1061 0 0 0 100

Step 4: Notice that we set both the population and prop-
erty densities of boxes in the woods to zero, as there is 
generally few people and wealth in the woods. However, 
fires are likely to spread from the edge of the forest to the 
surrounding farmlands or industrial areas. We divide the 
forest into three layers, the outermost layer, the middle 
layer and the innermost layer, as shown in Figure 6.

Figure 6: Three layers of the forest (the blue 
lines)

We assume that if fires burn in the outermost or middle 
layer, then they are bound to spread to the surrounding 
agricultural or industrial land. However, if fires burn in 
the innermost layer, it is likely that firefighters can pre-
vent them from affecting the surroundings if they respond 
promptly enough. Therefore, for boxes in the outermost 
and middle layers of the forest, we add the population and 
wealth densities of the eight boxes around them. But for 

boxes in the innermost layer, we keep the population and 
wealth densities zero.
Step 5: Generate the weight distribution by comparing the 
sum in each box with the following standards (Table 3):

Table 3: Weight standards
Sum Weight

> 1500 3.0
1200-1500 2.6
800-1200 2.2
500-800 1.8
200-500 1.4

< 200 1.0

Figure 7: Weight distribution
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After creating the map of weight distribution (see Fig-
ure 7), we multiply the fire frequency in each box by the 
weight of that box. We still aim to minimize the time 
function

T = +3.2 1.7 .
∑i j

i j i i i
= =
= =
12, 12 2 2
1, 1 n x x y y× − + −(

s
)2 2( )

0.91

and the only variable that has been changed is ni . The op-

timal position we get from our program is (6.994, 6.997). 
This is close to the result in Part 1, which is probably 
because in Part 1 we focus on fire frequencies and in Part 
2 we take population and wealth densities into account. 
Both the fire frequency and the population and wealth 
densities are the highest in the crowded area, so out fire 
station should be built around there.

4 Constrained
4.1 Constraint added and justifications
Now, we take the spread of fire into consideration. Given 
the speed of the fire, the fire trucks need to arrive at the 
fire area before the fire reaches its maximum coverage ca-
pacity, which we assume to be 12 square kilometers. After 
calculation, it is known that the fire station needs to be 
built within 6 kilometers of where the fire starts. In order 
to simplify the model, we assume that the fire occurs in 
the box (1,1).
Now, from that assumption, we put the constraints in the 
form of an algebraic expression,
( 1) ( 1) 6 ,x y− + − ≤

2 2 2

into our unconstrained optimal fire station location, and 
we find that the results of Parts 1 and 2 do not satisfy our 
inequality. Now, solving this inequality without the help 
of the penalty function is undoubtedly difficult, but given 
that the three-dimensional function is strongly convex, we 
can think of the inequality constraint as an equality con-
straint, and the simple proof is as follows, on this function, 
the value of the function will gradually increase from the 
lowest point to the point spreading in the direction of any 
x-y plane. This means that we can convert the inequality 
conditions to the equality restriction
( 1) ( 1) 6 ,x y− + − =2 2 2

The literal meaning of this is that under the constraint 
conditions, the optimal location must satisfy its equality 
constraints.
The simplified problem will be much simpler than before 
so that it can still be solved with the ordinary optimization 
algorithm with the aid of the no-penalty function. The 
following will first introduce the steps and ideas of our 
optimization algorithm in general, and then explain the 
specific operating steps and principles in detail.

4.2 Solution to Part 3
4.2.1 An original method

Now we observe the ordinary gradient descent algorithm 
formula:
θ θ− ∇a f ( ) ,
In the ordinary gradient descent, the size and direction of 
the gradient cannot be predicted in advance, so the optimi-
zation route of the machine, that is, the iterative process, 
cannot be predicted in advance. However, after adding the 
restriction of equality constraint, our optimization route is 
determined; that is, we need to carry out an optimization 
algorithm similar to the gradient descent algorithm along 
the circular trajectory formed by the equality constraint. 
Similar to the normal gradient descent algorithm, we will 
use the Z-direction descent rate of its position after each 
iteration to replace the gradient size. Moreover, the posi-
tion x=0 in the equation constraint is selected as the initial 
iteration position. The reason for selecting this position is 
that after observing the function of the three-dimensional 
function under the equation constraint in MATLAB, it is 
found that the position of the two endpoints under the cir-
cular image of the equation constraint is the point with the 
larger function value. The learning rate of general gradient 
descent plays the same role in this optimization algorithm, 
and human debugging is also necessary to obtain a bet-
ter iterative learning rate. We set the learning rate in the 
above formula as 0.5 degrees. We take (1,1) as the center 
of the circle, similar to the principle of polar coordinates, 
rotate an Angle of θ *∆z  on the circular trajectory from 
the initial position, and calculate the next position (x, y) 
after iteration by analogy and iteration repeatedly. Finally, 
there will be an effect similar to the gradient descent algo-
rithm, that is, when the decline rate of z becomes smaller. 
At this time, it is also close to the lowest point of the func-
tion value, and the change Angle of its next iteration will 
become smaller, so as to have the effect of not missing 
the lowest point. When the decline rate of z is large, the 
change Angle will also become larger so that it can iterate 
faster and get close to the minimum value.
The following describes the detailed principles and opera-
tions
First, we introduce how to calculate the z mentioned here, 
that is, the rate of change of the height or function value. 
First, we clarify that this algorithm is only effective for 
such special problems and it has certain limitations
We make the tangent line along the constraint function 
from the (x, y) position obtained after each iteration and 
get the function expression of the tangent line. In this 
case, the decline of its own function along the tangential 
direction can be approximately the decline of (x, y) in the 
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space curve, which is assumed because it is strongly con-
vex and the shape is similar to a three-dimensional image 
of a bowl. Now that we have a linear relationship between 
x and y, we just need to replace y with x to get a function 
of z with respect to x, and the derivative of that is the rate 
of change of z with respect to x. But notice that this is in 
three dimensions, so when x changes the minimum, the 
linear relationship between y and x is the same minimum 
in the tangent direction of the transformation in the math-
ematical sense, so the result of the derivation divided by 
the square root of 2 is the actual rate of change along the 
tangent direction. Now that we have a linear relationship 
between y, z and x, let’s say y=ax, z=cx and let’s make the 
sum of x squared plus y squared plus z squared equal to 
1, to help us see the actual change in z along the tangent. 
At this point, the whole step of our algorithm, namely the 
principle, has been roughly sorted out.
If the reader finds that the error is large when applied to 
other similar problems, it is recommended to calculate the 
rate of change of z carefully. Calculate the change value 
of the space curve function corresponding to the change 
minimum x after the change minimum x. Instead of calcu-
lating the change value along its tangent direction, strictly 
calculate the relationship between the y change minimum 
and the X minimum to determine whether it is a linear or 
nonlinear relationship, and calculate the change value of 
z in the space curve function according to the above-in-
troduced method, that is, the method of square summation 
and then root.
4.2.2 The penalty method

In addition to the algorithm, we came up with on our own, 
we also tried the penalty method. Its idea is to convert a 
constrained problem into one without constraints.[5]
Specifically, we used the quadratic penalty method. The 
steps are as follows:
Step 1: Construct the quadratic penalty function in the 
form:

P x f x c x c x( , ? ,σ σ) = + +( ) 1
2

 
 
 
∑ ∑
i i∈ ∈ 

i
2 ( )

 

i

2

( )

where x andf x∈n ( )  is the objective function, σ  is the 

penalty coefficient, and c x ii ( ) = ∈0,   and c x ii ( )?0, ∈  
are the equality and inequality constraints, respectively. 
Notice that the term including the inequality constraints 

is c x
 

i

2

( ) , which is defined as (0, .c xi
2 ( ))  This means the 

penalty is zero when the inequality is satisfied.
Step 2: Choose an initial value for σ  and x and minimize 
the function P x( ,σ )  for this value of σ . This is an un-
constrained optimization problem and can be solved using 

gradient descent or other methods.
Step 3: Increase σ  by a factor ρ  and minimize P x( ,σ )  
for the new value of σ . Keep doing this until a certain 
condition is met, i.e., the function passes the convergence 
test. This works because as σ  increases, the penalty term 
1
2
σ  
 
 
∑ ∑
i i∈ ∈ 

c x c xi
2 ( )?+

 

i

2

( )  will also increase, which can 

force our point to get closer to the feasible domain. As σ  
approaches the infinity, x will asymptotically approach the 
optimal solution.
The penalty function of this specific problem is

P x T x x y( , ( 1) ( 1) 6 .σ σ) = + − + − −( ) 1
2

  
2 2 2 2

According to our program, the optimal location of the fire 
station should be at (4.244, 6.220.)

Figure 8: Results of Parts 1, 2 and 3
In Figure 8, the blue dot is the position of the station in 
Part 1, the yellow dot is for Part 2 and the orange dot is 
for Part 3. The point in Part 3 is noticeably closer to the 
forest.

5 Conclusion
5.1 Conclusions on the location of the fire sta-
tion
Our model predicts that the best place for the fire station 
is typically towards the city’s center, presumably because 
this area is the busiest and has the greatest potential for 
property loss. Positions are around (6.91, 6.24) and (6.99, 
6.99) for the situation before and after adding weight, 
respectively. The position after adding the constraint is 
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around (4.24, 6.22).

5.2 Conclusions on the Gradient Descent Al-
gorithms
The gradient descent algorithm with momentum (in 2.3) 
took more than a hundred iterations, whereas the algo-
rithm in 2.4 typically took around eight iterations. This is 
most likely a result of the long axis in this model being 
less obvious than the short axis, which makes the momen-
tum algorithm iterate more frequently. Therefore, the mo-
mentum method might not be the best approach to tackle 
our problem.

5.3 Future prospect
We must admit that our model is a simplified one. There 
are a few things we can do, if time permits, to improve it. 
There are also some research directions that we may ex-
plore in the future.
5.3.1 . Consider the situation of building more than 
one fire station

Currently, the location of fire stations is frequently chosen 
using the shortest distance theory. But in the future, we 
can think about choosing several ideal places for fire sta-
tions. For handling increasingly complicated and changing 
fire incidents and emergencies, this strategy guarantees 
better coverage and reaction times within metropolitan 
regions.
5.3.2 . Consider a more realistic path or model

The shortest way through a straight line is frequently used 
in our present path design. Future planning should, how-
ever, take into account more practical routes or models. 
For instance, it is important to consider the geography, the 
state of the roads, and other potential difficulties. This can 
entail choosing sloped or twisting roads that more accu-
rately represent real-world situations.
5.3.3 . Consider restrictions or barriers

It is essential to include a number of restrictions or ob-
stacles in the fire station optimization procedure. The 
response time and efficiency of fire stations may be im-
pacted by these obstacles, which may include traffic con-
gestion, congested areas, or difficult-to-reach locations. In 

order to provide effective emergency response, the place-
ment and distribution of fire stations can be improved.
5.3.4 . Consider factors like weather and regional im-
pacts

Future fire station designs should take into account ele-
ments like local impacts and weather patterns. Different 
regions may experience different weather patterns as well 
as particular regional difficulties like natural catastrophes 
or distinctive physical factors. The ability to situate fire 
stations and allocate resources more precisely is made 
possible by taking these considerations into account.
5.3.5 . Investigate more optimization algorithms

Exploring and assessing various algorithms is crucial to 
improving fire station optimization. For instance, random-
ized GDO or Nadam algorithms might be used to decide 
on the best sites for fire stations and how to allocate re-
sources. Planning and administration of fire stations might 
become more effective and efficient with ongoing study 
and innovation in algorithm development.
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