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Abstract:
This article discusses two significant results about the uniform convergence of Fourier series. One is the uniform 
convergence of the Fourier series for Hölder-α(α>0) continuous functions, while the other is the uniform convergence 
of the Fourier series for functions that can be expressed as the sum of finitely many continuous monotonic functions. 
The two results are particularly useful. Because Hölder continuity condition ensures a specific regularity that facilitates 
the analysis and provides a robust framework for proving uniform convergence and many practical functions can 
be decomposed into monotonic components, making the theorem broadly applicable. By providing detailed proofs 
and applications, this study demonstrates the significant implications of uniform convergence in both theoretical and 
practical contexts. Moreover, this work paves the way for future research in higher-dimensional Fourier analysis, non-
periodic functions, and adaptive Fourier techniques, underscoring the ongoing relevance and versatility of Fourier series 
in modern mathematics. Several well-known results emerge as corollaries of these findings, highlighting the robustness 
and applicability of these theorems in Fourier analysis.
Keywords: Fourier series, Uniform convergence, Hölder-continuous function.

1. Introduction
Fourier analysis is a cornerstone of modern mathematical 
analysis, serving as a fundamental tool with far-reaching 
applications across various scientific and engineering dis-
ciplines [1, 2]. From signal processing and heat transfer to 
quantum mechanics and beyond, the ability to represent 
functions as trigonometric series has revolutionized the 
way the author approach and solve complex problems. 
The central focus of Fourier analysis is the decomposition 
of functions into sums of sines and cosines, allowing for 
a deeper understanding of their behavior and properties. 
One of the most critical aspects of Fourier analysis is the 
convergence of Fourier series. Convergence is not merely 
a theoretical concern; it ensures that the Fourier series ac-
curately approximates the target function, preserving es-
sential properties such as continuity and integrability. This 
is particularly important in practical applications where 
precision and reliability are paramount. Uniform conver-
gence, a stronger form of convergence, guarantees that the 
approximation is uniformly close to the function over its 
entire domain, providing a robust framework for analysis 
and application.
In this paper, the author explores the conditions under 
which Fourier series converge uniformly for specific 

classes of functions. It is widely known that the Fourier 

series of a Holder- α α 
 
 

>
1
2

 function and a bounded 

variation function uniformly convergent to themselves 
[1,2]. While in this paper, the author has improved them 
and present two significant results: the uniform conver-
gence of Fourier series for Hölder-α  (α > 0 ) continuous 
functions and for functions that can be expressed as the 
sum of finitely many continuous monotonic functions. 
These results extend people’s understanding of the pre-
requisites for uniform convergence and offer new insights 
into the structural properties of functions and their Fourier 
representations.
The proof techniques employed in this paper draw on 
fundamental concepts in Fourier analysis, such as the Di-
richlet kernel and the Riemann-Lebesgue Lemma. These 
tools are essential for studying the convergence properties 
of Fourier series and form the backbone of the theoretical 
framework. By delving into these methods, this artical aim 
to shed light on the mechanisms that underpin uniform 
convergence and demonstrate its implications in both the-
oretical and applied contexts.
The subsequent sections of this paper will provide a 
detailed examination of the methods and theories that 
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support the main results, followed by comprehensive 
proofs and discussions of their applications. Through this 
exploration, the author aims to highlight the importance 
of uniform convergence in Fourier analysis and its broad 
applicability in mathematical and physical domains. By 
understanding the conditions that ensure uniform conver-
gence, the author can better harness the por of Fourier se-
ries in various fields, from theoretical research to practical 
problem-solving.

2. Methods and Theory
The main problem in Fourier analysis is to represent an 
arbitrary given function in a trigonometric series. In order 
to find suitable functions so that can find better approx-
imation, it’s better to concentrate the study on complex 
valued functions that are integrable and 2π - periodic .  
The article considers Lebesgue integrability instead of 
Riemann integrability which is more general and do not 
take account improper integral. Therefore, the standard 
assumption will be that f ∈ −[ π π, ]  and f f(− =π π) ( )
. Notice that f can be periodically extended to  . And to 
be more convenient, such functions can be called to be 
defined on the circle [3].

2.1 Main Definition
Definition 1. The nth  Fourier coefficient of f  is defined by 

f n a f x e dxˆ ( ) = =n : ,
2
1
π
∫π−π ( ) −inx  and the Fourior series of 

f is 

2 

The subsequent sections of this paper will provide a detailed examination of the methods and 
theories that support the main results, followed by comprehensive proofs and discussions of their 
applications. Through this exploration, the author aims to highlight the importance of uniform 
convergence in Fourier analysis and its broad applicability in mathematical and physical domains. By 
understanding the conditions that ensure uniform convergence, the author can better harness the por 
of Fourier series in various fields, from theoretical research to practical problem-solving. 

2. Methods and Theory 
The main problem in Fourier analysis is to represent an arbitrary given function in a trigonometric 

series. In order to find suitable functions so that can find better approximation, it’s better to 
concentrate the study on complex valued functions that are integrable and 2𝜋𝜋-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. The article 
considers Lebesgue integrability instead of Riemann integrability which is more general and do not 
take account improper integral. Therefore, the standard assumption will be that 𝑓𝑓 ∈ ℒ[−𝜋𝜋, 𝜋𝜋] and 
𝑓𝑓(−𝜋𝜋) = 𝑓𝑓(𝜋𝜋). Notice that f can be periodically extended to ℝ. And to be more convenient, such 
functions can be called to be defined on the circle [3]. 

2.1 Main Definition 

Definition 1. The 𝑛𝑛𝑡𝑡ℎ Fourier coefficient of 𝑓𝑓 is defined by 𝑓𝑓(𝑛𝑛) = 𝑎𝑎𝑛𝑛 :=
1
2𝜋𝜋 ∫ 𝑓𝑓𝜋𝜋

−𝜋𝜋 (𝑥𝑥)𝑝𝑝−𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑥𝑥, 
and the Fourior series of f is 𝑓𝑓(𝑥𝑥) ∼ ∑ 𝑎𝑎𝑛𝑛∞

𝑛𝑛=−∞ 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖. 
Fourier series belong to a broader class of functions known as trigonometric series, which are 

defined as series of the form ∑ cn∞
n=−∞ einx. If a trigonometric series has only a finite number of 

nonzero coefficients, it is referred to as a trigonometric polynomial, with its degree being the largest 
|n| for cn ≠ 0. 
Definition 2.  The 𝑁𝑁𝑡𝑡ℎ partial sum of Fourier series of f, for 𝑁𝑁 ∈ ℕ is defined by a trigonometric 
polynomial: 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ 𝑎𝑎𝑛𝑛𝑁𝑁

𝑛𝑛=−𝑁𝑁 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖 
A basic question is that in what sense 𝑆𝑆𝑁𝑁(𝑓𝑓) converge to 𝑓𝑓 as 𝑁𝑁 → ∞. The following so-called 

Parseval’s identity should be familiar to us and it indicates the ℒ2 convergence of 𝑆𝑆𝑁𝑁(𝑓𝑓). 
Its proof can be seen in [4]. 

Theorem 1.  Let 𝑓𝑓 be an integrable function on the circle with 𝑓𝑓 ∼ ∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=−∞ 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖. Then: 

1. Mean-square convergence of the Fourier series 1
2𝜋𝜋 ∫ |𝑓𝑓(𝑥𝑥) − 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥)|2

2𝜋𝜋
0  𝑝𝑝𝑥𝑥 → 0  as 

𝑁𝑁 → ∞. 
2. Parseval’s identity ∑ |𝑎𝑎𝑛𝑛|2∞

𝑛𝑛=−∞ = 1
2𝜋𝜋 ∫ |𝑓𝑓(𝑥𝑥)|22𝜋𝜋

0  𝑝𝑝𝑥𝑥. 
Aimed to explore deeper the properties of Fourier series, it is better to make sure that the definition 

is well enough. A question comes out: if 𝑓𝑓 and 𝑔𝑔 have the same Fourier coefficient, is 𝑓𝑓 and 𝑔𝑔 
necessarily equal or not. See the following theorem: 
Theorem 2.  if 𝑓𝑓 and 𝑔𝑔 are continuous and 𝑓𝑓(𝑛𝑛) = �̂�𝑔(𝑛𝑛) for all 𝑛𝑛 ∈ ℤ, then 𝑓𝑓 = 𝑔𝑔. 
Proof.  By Parseval’s identity 1

2𝜋𝜋 ∫ |(𝑓𝑓 − 𝑔𝑔)(𝑥𝑥)|22𝜋𝜋
0  𝑝𝑝𝑥𝑥 = ∑ |𝑓𝑓(𝑛𝑛) − �̂�𝑔(𝑛𝑛)|2∞

𝑛𝑛=−∞ = 0. So 𝑓𝑓 = 𝑔𝑔. 
▫ 

2.2 Convolutions 
The convolution of two functions is essential in Fourier analysis and arises naturally within Fourier 

series. 
Definition 3.  Given two 2𝜋𝜋-periodic function defined on [−𝜋𝜋, 𝜋𝜋]. The convolution of 𝑓𝑓 and 𝑔𝑔 
is defined by: (𝑓𝑓 ∗ 𝑔𝑔)(𝑥𝑥) = ∫ 𝑓𝑓𝜋𝜋

−𝜋𝜋 (𝑥𝑥)𝑔𝑔(𝑥𝑥 − 𝑦𝑦)𝑝𝑝𝑦𝑦. 
Loosely speaking, convolution can be treated as a “weight averages”. 

Proposition 3.  Suppose that 𝑓𝑓, 𝑔𝑔, and ℎ are 2𝜋𝜋 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 integrable function defined on 
[−𝜋𝜋, 𝜋𝜋]. Then: 

.
Fourier series belong to a broader class of functions 
known as trigonometric series, which are defined as series 
of the form 
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gence of S fN ( ) .
Its proof can be seen in [4].
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𝑓𝑓(−𝜋𝜋) = 𝑓𝑓(𝜋𝜋). Notice that f can be periodically extended to ℝ. And to be more convenient, such 
functions can be called to be defined on the circle [3]. 

2.1 Main Definition 

Definition 1. The 𝑛𝑛𝑡𝑡ℎ Fourier coefficient of 𝑓𝑓 is defined by 𝑓𝑓(𝑛𝑛) = 𝑎𝑎𝑛𝑛 :=
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𝑛𝑛=−∞ 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖. 
Fourier series belong to a broader class of functions known as trigonometric series, which are 

defined as series of the form ∑ cn∞
n=−∞ einx. If a trigonometric series has only a finite number of 

nonzero coefficients, it is referred to as a trigonometric polynomial, with its degree being the largest 
|n| for cn ≠ 0. 
Definition 2.  The 𝑁𝑁𝑡𝑡ℎ partial sum of Fourier series of f, for 𝑁𝑁 ∈ ℕ is defined by a trigonometric 
polynomial: 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ 𝑎𝑎𝑛𝑛𝑁𝑁

𝑛𝑛=−𝑁𝑁 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖 
A basic question is that in what sense 𝑆𝑆𝑁𝑁(𝑓𝑓) converge to 𝑓𝑓 as 𝑁𝑁 → ∞. The following so-called 

Parseval’s identity should be familiar to us and it indicates the ℒ2 convergence of 𝑆𝑆𝑁𝑁(𝑓𝑓). 
Its proof can be seen in [4]. 

Theorem 1.  Let 𝑓𝑓 be an integrable function on the circle with 𝑓𝑓 ∼ ∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=−∞ 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖. Then: 

1. Mean-square convergence of the Fourier series 1
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𝑁𝑁 → ∞. 
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𝑛𝑛=−∞ = 1
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0  𝑝𝑝𝑥𝑥. 
Aimed to explore deeper the properties of Fourier series, it is better to make sure that the definition 

is well enough. A question comes out: if 𝑓𝑓 and 𝑔𝑔 have the same Fourier coefficient, is 𝑓𝑓 and 𝑔𝑔 
necessarily equal or not. See the following theorem: 
Theorem 2.  if 𝑓𝑓 and 𝑔𝑔 are continuous and 𝑓𝑓(𝑛𝑛) = �̂�𝑔(𝑛𝑛) for all 𝑛𝑛 ∈ ℤ, then 𝑓𝑓 = 𝑔𝑔. 
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𝑛𝑛=−∞ = 0. So 𝑓𝑓 = 𝑔𝑔. 
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2.2 Convolutions 
The convolution of two functions is essential in Fourier analysis and arises naturally within Fourier 

series. 
Definition 3.  Given two 2𝜋𝜋-periodic function defined on [−𝜋𝜋, 𝜋𝜋]. The convolution of 𝑓𝑓 and 𝑔𝑔 
is defined by: (𝑓𝑓 ∗ 𝑔𝑔)(𝑥𝑥) = ∫ 𝑓𝑓𝜋𝜋

−𝜋𝜋 (𝑥𝑥)𝑔𝑔(𝑥𝑥 − 𝑦𝑦)𝑝𝑝𝑦𝑦. 
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n=−∞ einx. If a trigonometric series has only a finite number of 

nonzero coefficients, it is referred to as a trigonometric polynomial, with its degree being the largest 
|n| for cn ≠ 0. 
Definition 2.  The 𝑁𝑁𝑡𝑡ℎ partial sum of Fourier series of f, for 𝑁𝑁 ∈ ℕ is defined by a trigonometric 
polynomial: 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ 𝑎𝑎𝑛𝑛𝑁𝑁
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A basic question is that in what sense 𝑆𝑆𝑁𝑁(𝑓𝑓) converge to 𝑓𝑓 as 𝑁𝑁 → ∞. The following so-called 

Parseval’s identity should be familiar to us and it indicates the ℒ2 convergence of 𝑆𝑆𝑁𝑁(𝑓𝑓). 
Its proof can be seen in [4]. 

Theorem 1.  Let 𝑓𝑓 be an integrable function on the circle with 𝑓𝑓 ∼ ∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=−∞ 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖. Then: 

1. Mean-square convergence of the Fourier series 1
2𝜋𝜋 ∫ |𝑓𝑓(𝑥𝑥) − 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥)|2

2𝜋𝜋
0  𝑝𝑝𝑥𝑥 → 0  as 

𝑁𝑁 → ∞. 
2. Parseval’s identity ∑ |𝑎𝑎𝑛𝑛|2∞

𝑛𝑛=−∞ = 1
2𝜋𝜋 ∫ |𝑓𝑓(𝑥𝑥)|22𝜋𝜋

0  𝑝𝑝𝑥𝑥. 
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is well enough. A question comes out: if 𝑓𝑓 and 𝑔𝑔 have the same Fourier coefficient, is 𝑓𝑓 and 𝑔𝑔 
necessarily equal or not. See the following theorem: 
Theorem 2.  if 𝑓𝑓 and 𝑔𝑔 are continuous and 𝑓𝑓(𝑛𝑛) = �̂�𝑔(𝑛𝑛) for all 𝑛𝑛 ∈ ℤ, then 𝑓𝑓 = 𝑔𝑔. 
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1
2𝜋𝜋 ∫ 𝑓𝑓𝜋𝜋

−𝜋𝜋 (𝑥𝑥)𝑝𝑝−𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑥𝑥, 
and the Fourior series of f is 𝑓𝑓(𝑥𝑥) ∼ ∑ 𝑎𝑎𝑛𝑛∞

𝑛𝑛=−∞ 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖. 
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Loosely speaking, convolution can be treated as a “weight averages”. 

Proposition 3.  Suppose that 𝑓𝑓, 𝑔𝑔, and ℎ are 2𝜋𝜋 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 integrable function defined on 
[−𝜋𝜋, 𝜋𝜋]. Then: 

 and  h  are 
2π − prriodic  integrable function defined on [−π π, ] . 
Then:

 

3 

𝑓𝑓 ∗ 𝑔𝑔 = 𝑔𝑔 ∗ 𝑓𝑓  (1) 
(𝑐𝑐𝑓𝑓) ∗ 𝑔𝑔 = 𝑐𝑐(𝑓𝑓 ∗ 𝑔𝑔) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 ∈ ℂ  (2) 

𝑓𝑓 ∗ (𝑔𝑔 + ℎ) = (𝑓𝑓 ∗ 𝑔𝑔) + (𝑓𝑓 ∗ ℎ) (3) 
(𝑓𝑓 ∗ 𝑔𝑔) ∗ ℎ = 𝑓𝑓 ∗ (𝑔𝑔 ∗ ℎ) (4) 

𝑓𝑓 ∗ 𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑖𝑖 (5) 
𝑓𝑓 ∗ �̂�𝑔(𝑐𝑐) = �̂�𝑓(𝑐𝑐)�̂�𝑔(𝑐𝑐) (6) 

 Suppose 𝑔𝑔 ∈ 𝐶𝐶𝑐𝑐
𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) for some 𝑘𝑘 ≥ 1. Then 𝑓𝑓 ∗ 𝑔𝑔 ∈ 𝐶𝐶𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) and 

𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖 (𝑓𝑓 ∗ 𝑔𝑔) = 𝑓𝑓 ∗ 𝑑𝑑𝑖𝑖𝑔𝑔
𝑑𝑑𝑥𝑥𝑖𝑖  (∀𝑖𝑖 = 1, ⋯ , 𝑘𝑘).                                                                                   (7)  

Remark 4.  The first four propositions above illustrate the algebraic properties. proposition (5) 
shows that convolution is to some extent "more regular". proposition (6) is the key in the study of 
Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑦𝑦)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑓𝑓

𝜋𝜋

−𝜋𝜋
(𝑦𝑦) ( ∑ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 

1. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], and 𝑓𝑓(𝑥𝑥) is 
a monotonic function, then there exists at least one point 𝜀𝜀 in the interval [𝑎𝑎, 𝑏𝑏] such that: 
∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥 + 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏

𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 
2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 

𝑓𝑓(𝑥𝑥) is a monotonically decreasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 
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Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
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) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 
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Remark 4.  The first four propositions above illustrate the algebraic properties. proposition (5) 
shows that convolution is to some extent "more regular". proposition (6) is the key in the study of 
Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑦𝑦)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑓𝑓

𝜋𝜋

−𝜋𝜋
(𝑦𝑦) ( ∑ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 

1. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], and 𝑓𝑓(𝑥𝑥) is 
a monotonic function, then there exists at least one point 𝜀𝜀 in the interval [𝑎𝑎, 𝑏𝑏] such that: 
∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥 + 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏

𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 
2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 

𝑓𝑓(𝑥𝑥) is a monotonically decreasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

3 

𝑓𝑓 ∗ 𝑔𝑔 = 𝑔𝑔 ∗ 𝑓𝑓  (1) 
(𝑐𝑐𝑓𝑓) ∗ 𝑔𝑔 = 𝑐𝑐(𝑓𝑓 ∗ 𝑔𝑔) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 ∈ ℂ  (2) 

𝑓𝑓 ∗ (𝑔𝑔 + ℎ) = (𝑓𝑓 ∗ 𝑔𝑔) + (𝑓𝑓 ∗ ℎ) (3) 
(𝑓𝑓 ∗ 𝑔𝑔) ∗ ℎ = 𝑓𝑓 ∗ (𝑔𝑔 ∗ ℎ) (4) 

𝑓𝑓 ∗ 𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑖𝑖 (5) 
𝑓𝑓 ∗ �̂�𝑔(𝑐𝑐) = �̂�𝑓(𝑐𝑐)�̂�𝑔(𝑐𝑐) (6) 

 Suppose 𝑔𝑔 ∈ 𝐶𝐶𝑐𝑐
𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) for some 𝑘𝑘 ≥ 1. Then 𝑓𝑓 ∗ 𝑔𝑔 ∈ 𝐶𝐶𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) and 

𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖 (𝑓𝑓 ∗ 𝑔𝑔) = 𝑓𝑓 ∗ 𝑑𝑑𝑖𝑖𝑔𝑔
𝑑𝑑𝑥𝑥𝑖𝑖  (∀𝑖𝑖 = 1, ⋯ , 𝑘𝑘).                                                                                   (7)  

Remark 4.  The first four propositions above illustrate the algebraic properties. proposition (5) 
shows that convolution is to some extent "more regular". proposition (6) is the key in the study of 
Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑦𝑦)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑓𝑓

𝜋𝜋

−𝜋𝜋
(𝑦𝑦) ( ∑ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 

1. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], and 𝑓𝑓(𝑥𝑥) is 
a monotonic function, then there exists at least one point 𝜀𝜀 in the interval [𝑎𝑎, 𝑏𝑏] such that: 
∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥 + 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏

𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 
2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 

𝑓𝑓(𝑥𝑥) is a monotonically decreasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

Remark 4.  The first four propositions above illustrate the 
algebraic properties. proposition (5) shows that convolu-
tion is to some extent “more regular”. proposition (6) is 
the key in the study of Fourier series.
The proofs are intuitional. Note that one can use continu-
ous functions to approximate a merely integrable function 
[5].

2.3 Dirichlet kernel
Definition 4.  The trigonometric polynomial defined on 

2
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[−π π, ]  by 

3 

𝑓𝑓 ∗ 𝑔𝑔 = 𝑔𝑔 ∗ 𝑓𝑓  (1) 
(𝑐𝑐𝑓𝑓) ∗ 𝑔𝑔 = 𝑐𝑐(𝑓𝑓 ∗ 𝑔𝑔) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 ∈ ℂ  (2) 

𝑓𝑓 ∗ (𝑔𝑔 + ℎ) = (𝑓𝑓 ∗ 𝑔𝑔) + (𝑓𝑓 ∗ ℎ) (3) 
(𝑓𝑓 ∗ 𝑔𝑔) ∗ ℎ = 𝑓𝑓 ∗ (𝑔𝑔 ∗ ℎ) (4) 

𝑓𝑓 ∗ 𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑖𝑖 (5) 
𝑓𝑓 ∗ �̂�𝑔(𝑐𝑐) = �̂�𝑓(𝑐𝑐)�̂�𝑔(𝑐𝑐) (6) 

 Suppose 𝑔𝑔 ∈ 𝐶𝐶𝑐𝑐
𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) for some 𝑘𝑘 ≥ 1. Then 𝑓𝑓 ∗ 𝑔𝑔 ∈ 𝐶𝐶𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) and 

𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖 (𝑓𝑓 ∗ 𝑔𝑔) = 𝑓𝑓 ∗ 𝑑𝑑𝑖𝑖𝑔𝑔
𝑑𝑑𝑥𝑥𝑖𝑖  (∀𝑖𝑖 = 1, ⋯ , 𝑘𝑘).                                                                                   (7)  

Remark 4.  The first four propositions above illustrate the algebraic properties. proposition (5) 
shows that convolution is to some extent "more regular". proposition (6) is the key in the study of 
Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑦𝑦)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑓𝑓

𝜋𝜋

−𝜋𝜋
(𝑦𝑦) ( ∑ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 

1. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], and 𝑓𝑓(𝑥𝑥) is 
a monotonic function, then there exists at least one point 𝜀𝜀 in the interval [𝑎𝑎, 𝑏𝑏] such that: 
∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥 + 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏

𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 
2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 

𝑓𝑓(𝑥𝑥) is a monotonically decreasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

 is called the N th  
Dirichlet kernel.
Use the summation formula for geometric progression. It 
can be deduced that:

 D xN ( ) =
sin N x  

  
  

sin 
 
 

+

2
x

1
2  (8)

The Dirichlet kernel is of great importance since the fol-
lowing formula for Fourier series
Proposition 5.  S f x f D xN N( )( ) = ( * )( )
Proof.  By definition and the interchangeability of a finite 
sum and an integral, it can be seen that:

3 

𝑓𝑓 ∗ 𝑔𝑔 = 𝑔𝑔 ∗ 𝑓𝑓  (1) 
(𝑐𝑐𝑓𝑓) ∗ 𝑔𝑔 = 𝑐𝑐(𝑓𝑓 ∗ 𝑔𝑔) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 ∈ ℂ  (2) 

𝑓𝑓 ∗ (𝑔𝑔 + ℎ) = (𝑓𝑓 ∗ 𝑔𝑔) + (𝑓𝑓 ∗ ℎ) (3) 
(𝑓𝑓 ∗ 𝑔𝑔) ∗ ℎ = 𝑓𝑓 ∗ (𝑔𝑔 ∗ ℎ) (4) 

𝑓𝑓 ∗ 𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑖𝑖 (5) 
𝑓𝑓 ∗ �̂�𝑔(𝑐𝑐) = �̂�𝑓(𝑐𝑐)�̂�𝑔(𝑐𝑐) (6) 

 Suppose 𝑔𝑔 ∈ 𝐶𝐶𝑐𝑐
𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) for some 𝑘𝑘 ≥ 1. Then 𝑓𝑓 ∗ 𝑔𝑔 ∈ 𝐶𝐶𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) and 

𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖 (𝑓𝑓 ∗ 𝑔𝑔) = 𝑓𝑓 ∗ 𝑑𝑑𝑖𝑖𝑔𝑔
𝑑𝑑𝑥𝑥𝑖𝑖  (∀𝑖𝑖 = 1, ⋯ , 𝑘𝑘).                                                                                   (7)  

Remark 4.  The first four propositions above illustrate the algebraic properties. proposition (5) 
shows that convolution is to some extent "more regular". proposition (6) is the key in the study of 
Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑦𝑦)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑓𝑓

𝜋𝜋

−𝜋𝜋
(𝑦𝑦) ( ∑ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 

1. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], and 𝑓𝑓(𝑥𝑥) is 
a monotonic function, then there exists at least one point 𝜀𝜀 in the interval [𝑎𝑎, 𝑏𝑏] such that: 
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𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 
2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 

𝑓𝑓(𝑥𝑥) is a monotonically decreasing function, then there exists at least one point 𝜀𝜀 in the 
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2.4 Main Proposition and Method
In demonstrating the main result in the following section, 
the article mainly uses two crucial propositions. For clari-
ty, the author states them below.
Proposition 6.  Riemann-Lebesgue lemma: If f  is an inte-

grable function on the interval [0,2π ]  and is 2π -period-

ic, then the Fourier sine coefficients bn  of f  tend to zero 

as n →∞ .

 lim b
n→∞ n = 0  (10)

where the Fourier sine coefficients bn  are given by:

 b f x sin nx dxn = π
1 ∫0

2π ( ) ( ) .  (11)

It is easy to tell that this is a direct consequence of Parse-
val’s identity (Theorem 2.1).
Proposition 7.  Second Mean Value Theorem [6]
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closed interval [a b, ] , and f x( )  is a monotonic function, 

then there exists at least one point   in the interval [a b, ]  
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𝑓𝑓 ∗ 𝑔𝑔 = 𝑔𝑔 ∗ 𝑓𝑓  (1) 
(𝑐𝑐𝑓𝑓) ∗ 𝑔𝑔 = 𝑐𝑐(𝑓𝑓 ∗ 𝑔𝑔) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 ∈ ℂ  (2) 

𝑓𝑓 ∗ (𝑔𝑔 + ℎ) = (𝑓𝑓 ∗ 𝑔𝑔) + (𝑓𝑓 ∗ ℎ) (3) 
(𝑓𝑓 ∗ 𝑔𝑔) ∗ ℎ = 𝑓𝑓 ∗ (𝑔𝑔 ∗ ℎ) (4) 

𝑓𝑓 ∗ 𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑖𝑖 (5) 
𝑓𝑓 ∗ �̂�𝑔(𝑐𝑐) = �̂�𝑓(𝑐𝑐)�̂�𝑔(𝑐𝑐) (6) 

 Suppose 𝑔𝑔 ∈ 𝐶𝐶𝑐𝑐
𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) for some 𝑘𝑘 ≥ 1. Then 𝑓𝑓 ∗ 𝑔𝑔 ∈ 𝐶𝐶𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) and 

𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖 (𝑓𝑓 ∗ 𝑔𝑔) = 𝑓𝑓 ∗ 𝑑𝑑𝑖𝑖𝑔𝑔
𝑑𝑑𝑥𝑥𝑖𝑖  (∀𝑖𝑖 = 1, ⋯ , 𝑘𝑘).                                                                                   (7)  

Remark 4.  The first four propositions above illustrate the algebraic properties. proposition (5) 
shows that convolution is to some extent "more regular". proposition (6) is the key in the study of 
Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑦𝑦)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑓𝑓

𝜋𝜋

−𝜋𝜋
(𝑦𝑦) ( ∑ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 

1. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], and 𝑓𝑓(𝑥𝑥) is 
a monotonic function, then there exists at least one point 𝜀𝜀 in the interval [𝑎𝑎, 𝑏𝑏] such that: 
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2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 
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2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 

𝑓𝑓(𝑥𝑥) is a monotonically decreasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

 are integrable on the 

closed interval [a b, ] , f x( )≥0 , and f x( )  is a monotoni-

cally decreasing function, then there exists at least one 
point   in the interval [a b, ]  such that: 

3 

𝑓𝑓 ∗ 𝑔𝑔 = 𝑔𝑔 ∗ 𝑓𝑓  (1) 
(𝑐𝑐𝑓𝑓) ∗ 𝑔𝑔 = 𝑐𝑐(𝑓𝑓 ∗ 𝑔𝑔) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 ∈ ℂ  (2) 

𝑓𝑓 ∗ (𝑔𝑔 + ℎ) = (𝑓𝑓 ∗ 𝑔𝑔) + (𝑓𝑓 ∗ ℎ) (3) 
(𝑓𝑓 ∗ 𝑔𝑔) ∗ ℎ = 𝑓𝑓 ∗ (𝑔𝑔 ∗ ℎ) (4) 

𝑓𝑓 ∗ 𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑖𝑖 (5) 
𝑓𝑓 ∗ �̂�𝑔(𝑐𝑐) = �̂�𝑓(𝑐𝑐)�̂�𝑔(𝑐𝑐) (6) 

 Suppose 𝑔𝑔 ∈ 𝐶𝐶𝑐𝑐
𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) for some 𝑘𝑘 ≥ 1. Then 𝑓𝑓 ∗ 𝑔𝑔 ∈ 𝐶𝐶𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) and 

𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖 (𝑓𝑓 ∗ 𝑔𝑔) = 𝑓𝑓 ∗ 𝑑𝑑𝑖𝑖𝑔𝑔
𝑑𝑑𝑥𝑥𝑖𝑖  (∀𝑖𝑖 = 1, ⋯ , 𝑘𝑘).                                                                                   (7)  

Remark 4.  The first four propositions above illustrate the algebraic properties. proposition (5) 
shows that convolution is to some extent "more regular". proposition (6) is the key in the study of 
Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑦𝑦)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑓𝑓

𝜋𝜋

−𝜋𝜋
(𝑦𝑦) ( ∑ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 

1. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], and 𝑓𝑓(𝑥𝑥) is 
a monotonic function, then there exists at least one point 𝜀𝜀 in the interval [𝑎𝑎, 𝑏𝑏] such that: 
∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥 + 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏

𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 
2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 

𝑓𝑓(𝑥𝑥) is a monotonically decreasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

3. If the functions f x( )  and 
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𝑓𝑓 ∗ (𝑔𝑔 + ℎ) = (𝑓𝑓 ∗ 𝑔𝑔) + (𝑓𝑓 ∗ ℎ) (3) 
(𝑓𝑓 ∗ 𝑔𝑔) ∗ ℎ = 𝑓𝑓 ∗ (𝑔𝑔 ∗ ℎ) (4) 

𝑓𝑓 ∗ 𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑖𝑖 (5) 
𝑓𝑓 ∗ �̂�𝑔(𝑐𝑐) = �̂�𝑓(𝑐𝑐)�̂�𝑔(𝑐𝑐) (6) 

 Suppose 𝑔𝑔 ∈ 𝐶𝐶𝑐𝑐
𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) for some 𝑘𝑘 ≥ 1. Then 𝑓𝑓 ∗ 𝑔𝑔 ∈ 𝐶𝐶𝑘𝑘([−𝜋𝜋, 𝜋𝜋]) and 

𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖 (𝑓𝑓 ∗ 𝑔𝑔) = 𝑓𝑓 ∗ 𝑑𝑑𝑖𝑖𝑔𝑔
𝑑𝑑𝑥𝑥𝑖𝑖  (∀𝑖𝑖 = 1, ⋯ , 𝑘𝑘).                                                                                   (7)  

Remark 4.  The first four propositions above illustrate the algebraic properties. proposition (5) 
shows that convolution is to some extent "more regular". proposition (6) is the key in the study of 
Fourier series. 

The proofs are intuitional. Note that one can use continuous functions to approximate a merely 
integrable function [5]. 

2.3 Dirichlet kernel 

Definition 4.  The trigonometric polynomial defined on [−𝜋𝜋, 𝜋𝜋] by 𝐷𝐷𝑁𝑁(𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=−𝑁𝑁 . is 

called the 𝑁𝑁𝑡𝑡ℎ Dirichlet kernel. 
Use the summation formula for geometric progression. It can be deduced that: 

𝐷𝐷𝑁𝑁(𝑥𝑥) =
sin ((𝑁𝑁 + 1

2) 𝑥𝑥)

sin (𝑥𝑥
2)

 (8) 

The Dirichlet kernel is of great importance since the following formula for Fourier series 
Proposition 5.  𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) 

Proof.  By definition and the interchangeability of a finite sum and an integral, it can be seen that: 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) = ∑ (∫ 𝑓𝑓
𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑦𝑦)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑓𝑓

𝜋𝜋

−𝜋𝜋
(𝑦𝑦) ( ∑ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)

𝑁𝑁

𝑖𝑖=−𝑁𝑁
) 𝑑𝑑𝑦𝑦 = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥) (9) 

▫ 

2.4 Main Proposition and Method 
In demonstrating the main result in the following section, the article mainly uses two crucial 

propositions. For clarity, the author states them below. 
Proposition 6.  Riemann-Lebesgue lemma: If 𝑓𝑓 is an integrable function on the interval [0,2𝜋𝜋] 
and is 2𝜋𝜋-periodic, then the Fourier sine coefficients 𝑏𝑏𝑖𝑖 of 𝑓𝑓 tend to zero as |𝑐𝑐| → ∞. 

𝑎𝑎𝑖𝑖𝑙𝑙
|𝑖𝑖|→∞

𝑏𝑏𝑖𝑖 = 0 (10) 
where the Fourier sine coefficients 𝑏𝑏𝑖𝑖 are given by: 

𝑏𝑏𝑖𝑖 = 1
𝜋𝜋 ∫ 𝑓𝑓2𝜋𝜋

0 (𝑥𝑥) sin(𝑐𝑐𝑥𝑥)  𝑑𝑑𝑥𝑥. (11)
It is easy to tell that this is a direct consequence of Parseval’s identity (Theorem 2.1). 
Proposition 7.  Second Mean Value Theorem [6] 

1. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], and 𝑓𝑓(𝑥𝑥) is 
a monotonic function, then there exists at least one point 𝜀𝜀 in the interval [𝑎𝑎, 𝑏𝑏] such that: 
∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥 + 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏

𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 
2. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 

𝑓𝑓(𝑥𝑥) is a monotonically decreasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑎𝑎) ∫ 𝑔𝑔𝜀𝜀
𝑎𝑎 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

 are integrable on the 

closed interval [a b, ] , f x( )≥0 , and f x( )  is a mono-
tonically increasing function, then there exists at least one 
point   in the interval [a b, ]  such that: 

4 

3. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 
𝑓𝑓(𝑥𝑥) is a monotonically increasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏
𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

These two propositions will be used repeatedly in the next section. 

3. Results and Application 
It is difficult to see whether the Fourier series of a given integrable function converge to the 

function. However, with specific condition added, the problem allows for a more systematic study of 
its properties. 
Definition 5.  Hölder-𝜶𝜶 Continuity: A function 𝑓𝑓 defined on the circle is said to be Hölder 𝛼𝛼-
continuous if there exists a constant 𝐶𝐶 > 0  such that, for any two points 𝑥𝑥, 𝑦𝑦  in [−𝜋𝜋, 𝜋𝜋] , the 
following Hölder condition holds: |𝑓𝑓(𝑦𝑦) − 𝑓𝑓(𝑥𝑥)| ≤ 𝐶𝐶 ⋅ |𝑦𝑦 − 𝑥𝑥|𝛼𝛼 . Here, 𝛼𝛼 > 0  is the Hölder 
exponent. 

Particularly, Hölder-1 continuous functions is called to be Lipschitz continuous. Note that a 𝐶𝐶1 
function defined on the circle is automatically Hölder-1 continuous which is Lipschitz continuous. 
One of the main theorem in this article is the following theorem. 
Theorem 8.  Suppose a function 𝑓𝑓 defined on the circle is Hölder 𝛼𝛼 continuous for some 𝛼𝛼 > 0 
then the Fourier series of 𝑓𝑓 is converges uniformly to 𝑓𝑓. 
Proof. 
Lemma 9.  (pointwise convergence) Suppose there exist 𝛼𝛼 > 0 and 𝐶𝐶 > 0 such that 
|𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)| ≤ 𝐶𝐶|𝑦𝑦|𝛼𝛼 for all 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋] then 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) converges to 𝑓𝑓(𝑥𝑥0) 
Proof of the lemma 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑓𝑓(𝑥𝑥0 − 𝑦𝑦)𝑑𝑑𝑦𝑦 − 𝑓𝑓(𝑥𝑥0) 

= 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

−𝜋𝜋
(𝑦𝑦)[𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)]𝑑𝑑𝑦𝑦 = 1

2𝜋𝜋 ∫ sin
𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦        (12) 

where the third equation holds by the fact that 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋
−𝜋𝜋 (𝑥𝑥)𝑑𝑑𝑥𝑥 = 1. Choose 𝛿𝛿 > 0 Denote: 

𝐼𝐼1 ≔ 1
2𝜋𝜋 ∫ sin

−𝛿𝛿

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (13) 

𝐼𝐼2 ≔ 1
2𝜋𝜋 ∫ sin

𝛿𝛿

−𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (14) 

𝐼𝐼3 ≔ 1
2𝜋𝜋 ∫ sin

𝜋𝜋

𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (15) 
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then the Fourier series of 𝑓𝑓 is converges uniformly to 𝑓𝑓. 
Proof. 
Lemma 9.  (pointwise convergence) Suppose there exist 𝛼𝛼 > 0 and 𝐶𝐶 > 0 such that 
|𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)| ≤ 𝐶𝐶|𝑦𝑦|𝛼𝛼 for all 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋] then 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) converges to 𝑓𝑓(𝑥𝑥0) 
Proof of the lemma 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑓𝑓(𝑥𝑥0 − 𝑦𝑦)𝑑𝑑𝑦𝑦 − 𝑓𝑓(𝑥𝑥0) 

= 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

−𝜋𝜋
(𝑦𝑦)[𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)]𝑑𝑑𝑦𝑦 = 1

2𝜋𝜋 ∫ sin
𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦        (12) 

where the third equation holds by the fact that 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋
−𝜋𝜋 (𝑥𝑥)𝑑𝑑𝑥𝑥 = 1. Choose 𝛿𝛿 > 0 Denote: 

𝐼𝐼1 ≔ 1
2𝜋𝜋 ∫ sin

−𝛿𝛿

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (13) 

𝐼𝐼2 ≔ 1
2𝜋𝜋 ∫ sin

𝛿𝛿

−𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (14) 

𝐼𝐼3 ≔ 1
2𝜋𝜋 ∫ sin

𝜋𝜋

𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (15) 

Then, by Riemann-Lesbgue lemma 𝐼𝐼1, 𝐼𝐼3 → 0 as 𝑁𝑁 → ∞. Consider 

|𝐼𝐼2| = 1
2𝜋𝜋 ∫ |sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦|

𝛿𝛿

−𝛿𝛿
≤ 1

2𝜋𝜋 ∫ | 𝐶𝐶|𝑦𝑦|𝛼𝛼

sin (𝑦𝑦
2)

|
𝛿𝛿

−𝛿𝛿
𝑑𝑑𝑦𝑦 

≤ ∫ 𝐶𝐶|𝑦𝑦|𝛼𝛼

|𝑦𝑦|
𝛿𝛿

−𝛿𝛿

𝜋𝜋
2 𝑑𝑑𝑦𝑦 ≤ �̃�𝐶 ∫ 𝑦𝑦𝛼𝛼−1

𝛿𝛿

0
𝑑𝑑𝑦𝑦 = �̃̃�𝐶𝛿𝛿𝛼𝛼 (16) 

where 𝐶𝐶, �̃�𝐶, �̃̃�𝐶 are irrelevant constants. Therefore |𝐼𝐼2| → 0 as 𝛿𝛿 → 0. The result follows. 
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3. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 
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𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

These two propositions will be used repeatedly in the next section. 

3. Results and Application 
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Particularly, Hölder-1 continuous functions is called to be Lipschitz continuous. Note that a 𝐶𝐶1 
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sin

)

2
y

( )  (13)

 I sin N y dy2 :
2 2
1 1
π
∫δ−δ   

  
  

+
f x y f x( 0 0− −

sin

)

2
y

( )  (14)

 I sin N y dy3 :
2 2
1 1
π
∫πδ   

  
  

+
f x y f x( 0 0− −

sin

)

2
y

( )  (15)

Then, by Riemann-Lesbgue lemma I1 , I3  → 0  as 
N →∞ . Consider

I sin N y dy2 = + ≤
2 2
1 1
π
∫δ−δ   

  
  

f x y f x( 0 0− −

sin

)

2
y

( )

2
1
π
∫δ−δ

sin

C y
 
 
 2

y

α

dy
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3. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 
𝑓𝑓(𝑥𝑥) is a monotonically increasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏
𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

These two propositions will be used repeatedly in the next section. 

3. Results and Application 
It is difficult to see whether the Fourier series of a given integrable function converge to the 

function. However, with specific condition added, the problem allows for a more systematic study of 
its properties. 
Definition 5.  Hölder-𝜶𝜶 Continuity: A function 𝑓𝑓 defined on the circle is said to be Hölder 𝛼𝛼-
continuous if there exists a constant 𝐶𝐶 > 0  such that, for any two points 𝑥𝑥, 𝑦𝑦  in [−𝜋𝜋, 𝜋𝜋] , the 
following Hölder condition holds: |𝑓𝑓(𝑦𝑦) − 𝑓𝑓(𝑥𝑥)| ≤ 𝐶𝐶 ⋅ |𝑦𝑦 − 𝑥𝑥|𝛼𝛼 . Here, 𝛼𝛼 > 0  is the Hölder 
exponent. 

Particularly, Hölder-1 continuous functions is called to be Lipschitz continuous. Note that a 𝐶𝐶1 
function defined on the circle is automatically Hölder-1 continuous which is Lipschitz continuous. 
One of the main theorem in this article is the following theorem. 
Theorem 8.  Suppose a function 𝑓𝑓 defined on the circle is Hölder 𝛼𝛼 continuous for some 𝛼𝛼 > 0 
then the Fourier series of 𝑓𝑓 is converges uniformly to 𝑓𝑓. 
Proof. 
Lemma 9.  (pointwise convergence) Suppose there exist 𝛼𝛼 > 0 and 𝐶𝐶 > 0 such that 
|𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)| ≤ 𝐶𝐶|𝑦𝑦|𝛼𝛼 for all 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋] then 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) converges to 𝑓𝑓(𝑥𝑥0) 
Proof of the lemma 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑓𝑓(𝑥𝑥0 − 𝑦𝑦)𝑑𝑑𝑦𝑦 − 𝑓𝑓(𝑥𝑥0) 

= 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

−𝜋𝜋
(𝑦𝑦)[𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)]𝑑𝑑𝑦𝑦 = 1

2𝜋𝜋 ∫ sin
𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦        (12) 

where the third equation holds by the fact that 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋
−𝜋𝜋 (𝑥𝑥)𝑑𝑑𝑥𝑥 = 1. Choose 𝛿𝛿 > 0 Denote: 

𝐼𝐼1 ≔ 1
2𝜋𝜋 ∫ sin

−𝛿𝛿

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (13) 

𝐼𝐼2 ≔ 1
2𝜋𝜋 ∫ sin

𝛿𝛿

−𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (14) 

𝐼𝐼3 ≔ 1
2𝜋𝜋 ∫ sin

𝜋𝜋

𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (15) 

Then, by Riemann-Lesbgue lemma 𝐼𝐼1, 𝐼𝐼3 → 0 as 𝑁𝑁 → ∞. Consider 

|𝐼𝐼2| = 1
2𝜋𝜋 ∫ |sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦|

𝛿𝛿

−𝛿𝛿
≤ 1

2𝜋𝜋 ∫ | 𝐶𝐶|𝑦𝑦|𝛼𝛼

sin (𝑦𝑦
2)

|
𝛿𝛿

−𝛿𝛿
𝑑𝑑𝑦𝑦 

≤ ∫ 𝐶𝐶|𝑦𝑦|𝛼𝛼

|𝑦𝑦|
𝛿𝛿

−𝛿𝛿

𝜋𝜋
2 𝑑𝑑𝑦𝑦 ≤ �̃�𝐶 ∫ 𝑦𝑦𝛼𝛼−1

𝛿𝛿

0
𝑑𝑑𝑦𝑦 = �̃̃�𝐶𝛿𝛿𝛼𝛼 (16) 

where 𝐶𝐶, �̃�𝐶, �̃̃�𝐶 are irrelevant constants. Therefore |𝐼𝐼2| → 0 as 𝛿𝛿 → 0. The result follows. 
Back to the theorem, since 𝑓𝑓 is easily seen to be continuous, ||𝑓𝑓||∞ exists and is finite because 

𝑓𝑓 is 2𝜋𝜋-periodic. Denote 𝑀𝑀 = ||𝑓𝑓||∞. Let 𝑥𝑥0 ∈ [−𝜋𝜋, 𝜋𝜋] be arbitrary and fixed. Let 𝛿𝛿 ∈ (0,1) be 
arbitrary. Recall that in the proof of the lemma, it is been denoted that 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 (17) 
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3. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 
𝑓𝑓(𝑥𝑥) is a monotonically increasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏
𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

These two propositions will be used repeatedly in the next section. 

3. Results and Application 
It is difficult to see whether the Fourier series of a given integrable function converge to the 

function. However, with specific condition added, the problem allows for a more systematic study of 
its properties. 
Definition 5.  Hölder-𝜶𝜶 Continuity: A function 𝑓𝑓 defined on the circle is said to be Hölder 𝛼𝛼-
continuous if there exists a constant 𝐶𝐶 > 0  such that, for any two points 𝑥𝑥, 𝑦𝑦  in [−𝜋𝜋, 𝜋𝜋] , the 
following Hölder condition holds: |𝑓𝑓(𝑦𝑦) − 𝑓𝑓(𝑥𝑥)| ≤ 𝐶𝐶 ⋅ |𝑦𝑦 − 𝑥𝑥|𝛼𝛼 . Here, 𝛼𝛼 > 0  is the Hölder 
exponent. 

Particularly, Hölder-1 continuous functions is called to be Lipschitz continuous. Note that a 𝐶𝐶1 
function defined on the circle is automatically Hölder-1 continuous which is Lipschitz continuous. 
One of the main theorem in this article is the following theorem. 
Theorem 8.  Suppose a function 𝑓𝑓 defined on the circle is Hölder 𝛼𝛼 continuous for some 𝛼𝛼 > 0 
then the Fourier series of 𝑓𝑓 is converges uniformly to 𝑓𝑓. 
Proof. 
Lemma 9.  (pointwise convergence) Suppose there exist 𝛼𝛼 > 0 and 𝐶𝐶 > 0 such that 
|𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)| ≤ 𝐶𝐶|𝑦𝑦|𝛼𝛼 for all 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋] then 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) converges to 𝑓𝑓(𝑥𝑥0) 
Proof of the lemma 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

−𝜋𝜋
(𝑦𝑦)𝑓𝑓(𝑥𝑥0 − 𝑦𝑦)𝑑𝑑𝑦𝑦 − 𝑓𝑓(𝑥𝑥0) 

= 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

−𝜋𝜋
(𝑦𝑦)[𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)]𝑑𝑑𝑦𝑦 = 1

2𝜋𝜋 ∫ sin
𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦        (12) 

where the third equation holds by the fact that 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋
−𝜋𝜋 (𝑥𝑥)𝑑𝑑𝑥𝑥 = 1. Choose 𝛿𝛿 > 0 Denote: 

𝐼𝐼1 ≔ 1
2𝜋𝜋 ∫ sin

−𝛿𝛿

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (13) 

𝐼𝐼2 ≔ 1
2𝜋𝜋 ∫ sin

𝛿𝛿

−𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (14) 

𝐼𝐼3 ≔ 1
2𝜋𝜋 ∫ sin

𝜋𝜋

𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (15) 

Then, by Riemann-Lesbgue lemma 𝐼𝐼1, 𝐼𝐼3 → 0 as 𝑁𝑁 → ∞. Consider 

|𝐼𝐼2| = 1
2𝜋𝜋 ∫ |sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦|

𝛿𝛿

−𝛿𝛿
≤ 1

2𝜋𝜋 ∫ | 𝐶𝐶|𝑦𝑦|𝛼𝛼

sin (𝑦𝑦
2)

|
𝛿𝛿

−𝛿𝛿
𝑑𝑑𝑦𝑦 

≤ ∫ 𝐶𝐶|𝑦𝑦|𝛼𝛼

|𝑦𝑦|
𝛿𝛿

−𝛿𝛿

𝜋𝜋
2 𝑑𝑑𝑦𝑦 ≤ �̃�𝐶 ∫ 𝑦𝑦𝛼𝛼−1

𝛿𝛿

0
𝑑𝑑𝑦𝑦 = �̃̃�𝐶𝛿𝛿𝛼𝛼 (16) 

where 𝐶𝐶, �̃�𝐶, �̃̃�𝐶 are irrelevant constants. Therefore |𝐼𝐼2| → 0 as 𝛿𝛿 → 0. The result follows. 
Back to the theorem, since 𝑓𝑓 is easily seen to be continuous, ||𝑓𝑓||∞ exists and is finite because 

𝑓𝑓 is 2𝜋𝜋-periodic. Denote 𝑀𝑀 = ||𝑓𝑓||∞. Let 𝑥𝑥0 ∈ [−𝜋𝜋, 𝜋𝜋] be arbitrary and fixed. Let 𝛿𝛿 ∈ (0,1) be 
arbitrary. Recall that in the proof of the lemma, it is been denoted that 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 (17) 

 (16)

where 
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3. If the functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are integrable on the closed interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) ≥ 0, and 
𝑓𝑓(𝑥𝑥) is a monotonically increasing function, then there exists at least one point 𝜀𝜀 in the 
interval [𝑎𝑎, 𝑏𝑏] such that: ∫ 𝑓𝑓𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑏𝑏) ∫ 𝑔𝑔𝑏𝑏
𝜀𝜀 (𝑥𝑥) 𝑑𝑑𝑥𝑥. 

These two propositions will be used repeatedly in the next section. 

3. Results and Application 
It is difficult to see whether the Fourier series of a given integrable function converge to the 

function. However, with specific condition added, the problem allows for a more systematic study of 
its properties. 
Definition 5.  Hölder-𝜶𝜶 Continuity: A function 𝑓𝑓 defined on the circle is said to be Hölder 𝛼𝛼-
continuous if there exists a constant 𝐶𝐶 > 0  such that, for any two points 𝑥𝑥, 𝑦𝑦  in [−𝜋𝜋, 𝜋𝜋] , the 
following Hölder condition holds: |𝑓𝑓(𝑦𝑦) − 𝑓𝑓(𝑥𝑥)| ≤ 𝐶𝐶 ⋅ |𝑦𝑦 − 𝑥𝑥|𝛼𝛼 . Here, 𝛼𝛼 > 0  is the Hölder 
exponent. 

Particularly, Hölder-1 continuous functions is called to be Lipschitz continuous. Note that a 𝐶𝐶1 
function defined on the circle is automatically Hölder-1 continuous which is Lipschitz continuous. 
One of the main theorem in this article is the following theorem. 
Theorem 8.  Suppose a function 𝑓𝑓 defined on the circle is Hölder 𝛼𝛼 continuous for some 𝛼𝛼 > 0 
then the Fourier series of 𝑓𝑓 is converges uniformly to 𝑓𝑓. 
Proof. 
Lemma 9.  (pointwise convergence) Suppose there exist 𝛼𝛼 > 0 and 𝐶𝐶 > 0 such that 
|𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)| ≤ 𝐶𝐶|𝑦𝑦|𝛼𝛼 for all 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋] then 𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) converges to 𝑓𝑓(𝑥𝑥0) 
Proof of the lemma 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = (𝑓𝑓 ∗ 𝐷𝐷𝑁𝑁)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁
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sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦        (12) 

where the third equation holds by the fact that 1
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋
−𝜋𝜋 (𝑥𝑥)𝑑𝑑𝑥𝑥 = 1. Choose 𝛿𝛿 > 0 Denote: 

𝐼𝐼1 ≔ 1
2𝜋𝜋 ∫ sin

−𝛿𝛿

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (13) 

𝐼𝐼2 ≔ 1
2𝜋𝜋 ∫ sin

𝛿𝛿
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((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (14) 

𝐼𝐼3 ≔ 1
2𝜋𝜋 ∫ sin

𝜋𝜋

𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (15) 

Then, by Riemann-Lesbgue lemma 𝐼𝐼1, 𝐼𝐼3 → 0 as 𝑁𝑁 → ∞. Consider 

|𝐼𝐼2| = 1
2𝜋𝜋 ∫ |sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦|

𝛿𝛿

−𝛿𝛿
≤ 1

2𝜋𝜋 ∫ | 𝐶𝐶|𝑦𝑦|𝛼𝛼

sin (𝑦𝑦
2)

|
𝛿𝛿

−𝛿𝛿
𝑑𝑑𝑦𝑦 

≤ ∫ 𝐶𝐶|𝑦𝑦|𝛼𝛼

|𝑦𝑦|
𝛿𝛿

−𝛿𝛿

𝜋𝜋
2 𝑑𝑑𝑦𝑦 ≤ �̃�𝐶 ∫ 𝑦𝑦𝛼𝛼−1

𝛿𝛿

0
𝑑𝑑𝑦𝑦 = �̃̃�𝐶𝛿𝛿𝛼𝛼 (16) 

where 𝐶𝐶, �̃�𝐶, �̃̃�𝐶 are irrelevant constants. Therefore |𝐼𝐼2| → 0 as 𝛿𝛿 → 0. The result follows. 
Back to the theorem, since 𝑓𝑓 is easily seen to be continuous, ||𝑓𝑓||∞ exists and is finite because 

𝑓𝑓 is 2𝜋𝜋-periodic. Denote 𝑀𝑀 = ||𝑓𝑓||∞. Let 𝑥𝑥0 ∈ [−𝜋𝜋, 𝜋𝜋] be arbitrary and fixed. Let 𝛿𝛿 ∈ (0,1) be 
arbitrary. Recall that in the proof of the lemma, it is been denoted that 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 (17) 

 are irrelevant constants. Therefore I2 → 0  
as δ → 0 . The result follows.
Back to the theorem, since f  is easily seen to be contin-

uous, f ∞  exists and is finite because f  is 2π -periodic. 

Denote M f= ∞ . Let x0 ∈ −[ π π, ]  be arbitrary and fixed. 

Let δ ∈(0,1)  be arbitrary. Recall that in the proof of the 
lemma, it is been denoted that
 S f x f x I I IN ( )( 0 0 1 2 3) − = + +( )  (17)

where I C2 ≤ δ α  for some constant C.  irrelevant to the 

chosen x0  and N  and tend to zero as δ → 0.  Recall that

 I sin N y dy1 :
2 2
1 1
π
∫−−δπ   

  
  

+
f x y f x( 0 0− −

sin

)

2
y

( )  (18)

 I sin N y dy3 :
2 2
1 1
π
∫πδ   

  
  

+
f x y f x( 0 0− −

sin

)

2
y

( )  (19)

By symmetry, it suffices to only focus on I3 . While

 

∫

I sin N y dy3

π
δ

= + −

D y dy U VN

2 2 2
1 1
π π

(

∫

)

π
δ

:= +

  
  
  

f x y f x(

sin
0 0−

2
y

) ( )

 (20)

where

 U sin N y dy= +
2 2
1 1
π
∫πδ   

  
  

f x y(

sin
0 −

2
y

)  (21)

 V D y dy= −
f x
2
(
π

0 ) ∫πδ N ( )  (22)

Obviously V D y dy≤
2
M
π
∫πδ N ( ) ,  which tends to zero as 

N →∞  for any fixed δ π∈(0, )  by Riemann-Lebesgue 

lemma and are irrelevant to chosen x0 .

To study U  the author introduce function g  on [δ π, ]  

defined by g y( ) = f x y(

sin
0 −

2
y

) . Note M g1 := ≤∞ sin
M

2
δ  

and for any y y1 2, ,∈[δ π ]  on has

 g y g y( 1 2) − ≤ +( ) f x y f x y( 0 1 0 2− − −

sin

)
y
2

1

( )

 f x y f x y(

sin sin
0 2 0 2− −

y y
2 2

1 2

) − ( )
≤ +

A y y

sin
1 2−
δ
2

α

 M A y y
 
 
 

y y
2 2

sin

1 2−

δ
2

2 ≤ −
 

1 2  (23)

where A  and 
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where |𝐼𝐼2| ≤ 𝐶𝐶𝛿𝛿𝛼𝛼 for some constant 𝐶𝐶. irrelevant to the chosen 𝑥𝑥0 and 𝑁𝑁 and tend to zero as 𝛿𝛿 →
0. Recall that 

𝐼𝐼1 ≔ 1
2𝜋𝜋 ∫ sin

−𝛿𝛿

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (18) 

𝐼𝐼3 ≔ 1
2𝜋𝜋 ∫ sin

𝜋𝜋

𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥0)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (19) 

By symmetry, it suffices to only focus on 𝐼𝐼3. While 

𝐼𝐼3 = 1
2𝜋𝜋 ∫ sin

𝜋𝜋

𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 − 𝑓𝑓(𝑥𝑥0)

2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁
𝜋𝜋

𝛿𝛿
(𝑦𝑦)𝑑𝑑𝑦𝑦 ≔ 𝑈𝑈 + 𝑉𝑉 (20) 

where 

𝑈𝑈 = 1
2𝜋𝜋 ∫ sin

𝜋𝜋

𝛿𝛿
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 (21) 

𝑉𝑉 = − 𝑓𝑓(𝑥𝑥0)
2𝜋𝜋 ∫ 𝐷𝐷𝑁𝑁

𝜋𝜋

𝛿𝛿
(𝑦𝑦)𝑑𝑑𝑦𝑦 (22) 

Obviously |𝑉𝑉| ≤ 𝑀𝑀
2𝜋𝜋 |∫ 𝐷𝐷𝑁𝑁

𝜋𝜋
𝛿𝛿 (𝑦𝑦)𝑑𝑑𝑦𝑦|,  which tends to zero as 𝑁𝑁 → ∞  for any fixed 𝛿𝛿 ∈ (0, 𝜋𝜋)  by 

Riemann-Lebesgue lemma and are irrelevant to chosen 𝑥𝑥0. 
To study 𝑈𝑈 the author introduce function 𝑔𝑔 on [𝛿𝛿, 𝜋𝜋] defined by 𝑔𝑔(𝑦𝑦) = 𝑓𝑓(𝑥𝑥0−𝑦𝑦)

sin𝑦𝑦
2

. Note 𝑀𝑀1: =

||𝑔𝑔||∞ ≤ 𝑀𝑀
sin 𝛿𝛿

2
 and for any 𝑦𝑦1, 𝑦𝑦2 ∈ [𝛿𝛿, 𝜋𝜋] on has 

|𝑔𝑔(𝑦𝑦1) − 𝑔𝑔(𝑦𝑦2)| ≤ |𝑓𝑓(𝑥𝑥0 − 𝑦𝑦1) − 𝑓𝑓(𝑥𝑥0) − 𝑦𝑦2

sin 𝑦𝑦1
2

| + |𝑓𝑓(𝑥𝑥0 − 𝑦𝑦2)
sin 𝑦𝑦1

2
− 𝑓𝑓(𝑥𝑥0 − 𝑦𝑦2)

sin 𝑦𝑦2
2

| 

≤ 𝐴𝐴|𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼

sin 𝛿𝛿
2

+ 𝑀𝑀
|𝑦𝑦1

2 − 𝑦𝑦2
2 |

(sin 𝛿𝛿
2)

2 ≤ �̃�𝐴|𝑦𝑦1 − 𝑦𝑦2| (23) 

where 𝐴𝐴  and �̃�𝐴 = �̃�𝐴(𝑀𝑀, 𝛿𝛿)  are some positive constant depending only on 𝑀𝑀  and 𝛿𝛿  which is 
irrelevant to chosen 𝑥𝑥0. Choose the smallest 𝑁𝑁1 ∈ ℕ and the largest 𝑁𝑁2 ∈ ℕ such that 

⋃
𝑁𝑁2

𝑘𝑘=𝑁𝑁1
𝐼𝐼𝐾𝐾 ≔  ⋃

𝑁𝑁2

𝑘𝑘=𝑁𝑁1
[ 2𝑘𝑘𝜋𝜋
𝑁𝑁 + 1

2
, 2(𝑘𝑘 + 1)𝜋𝜋

𝑁𝑁 + 1
2

] ⊂ [𝛿𝛿, 𝜋𝜋]. (24) 

Obviously, 𝑁𝑁2 − 𝑁𝑁1 + 1 ≤ 𝜋𝜋−𝛿𝛿
2𝜋𝜋

𝑁𝑁+1
2

≤ 𝑁𝑁+1
2

2 ≤ 𝑁𝑁, and 

|𝑈𝑈 − 1
2𝜋𝜋 ∑ ∫ sin

𝐼𝐼𝑘𝑘

𝑁𝑁2

𝑘𝑘=𝑁𝑁1

((𝑁𝑁 + 1
2) 𝑦𝑦) 𝑔𝑔(𝑦𝑦)𝑑𝑑𝑦𝑦| ≤ ||𝑔𝑔||∞ ⋅ 2 ⋅ 2𝜋𝜋

𝑁𝑁 + 1
2

≤ 4𝜋𝜋
𝑁𝑁 𝑀𝑀1 (25) 

For each 𝑘𝑘 = 𝑁𝑁1, ⋯ , 𝑁𝑁2 the author apply mean value theorem to bound 

|∫ sin
𝐼𝐼𝑘𝑘

((𝑁𝑁 + 1
2) 𝑦𝑦) 𝑔𝑔(𝑦𝑦)𝑑𝑑𝑦𝑦| (26) 

above by 

∫ sin
𝜋𝜋

𝑁𝑁+1
2

0
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑑𝑑𝑦𝑦 ⋅ �̃�𝐶 ( 2𝜋𝜋
𝑁𝑁 + 1

2
)

𝛼𝛼

(27) 

 are some positive constant 

depending only on M  and δ  which is irrelevant to chosen 
x0.  Choose the smallest N1∈  and the largest N2 ∈  
such that

 
k N k N
 

N N

= =

2 2

1 1

IK : , , .= ⊂

 
 
 
 
 

N N

2 2 1k k

+ +

π π
1 1
2 2

( + ) [δ π ]  (24)

Obviously, N N N2 1− + ≤ ≤ ≤1 ,

N

π δ
2
−

+

π
1
2

N

2

+
1
2  and

4
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U sin N y g y dy g

N

2 4

+

− + ≤ ⋅ ⋅

π π
1
2

2 2
1 1
π

≤

k N
∑
N

=

N

2

1

∫

M

Ik

1

  
  
  

( ) ∞ 2

 (25)

For each k N N= 1 2, ,  the author apply mean value theo-
rem to bound

 ∫ Ik
sin N y g y dy  

  
  

+
1
2

( )  (26)

above by

 ∫0

N

π

+
1
2 sin N y dy C  

  
  

+ ⋅
1 2
2

 
 
 
 
 
 

N +

π
1
2

α

 (27)

which is further bounded above by 
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which is further bounded above by �̃̃�𝐶 1
𝑁𝑁

1
𝑁𝑁𝛼𝛼. For some constant �̃�𝐶, �̃̃�𝐶 Therefore it is finally known to 

us that:  

𝑈𝑈 ≤ 4𝜋𝜋
𝑁𝑁 𝑀𝑀1 + �̃̃�𝐶

𝑁𝑁𝛼𝛼  (28) 

Combined all results above, 
𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) (29) 

has an upper bound irrelevant to chosen 𝑥𝑥0 and tends to 0. Therefore the convergence is uniform. 
The theorem has now been proved. 

The theorem above has many corollary and application. One is a famous theorem proved by 
Dirichlet which states that any 𝐶𝐶1 function defined on the circle has uniform convergent Fourier 
series converged to itself. 
Uniform convergence of Fourier series: main result 2 
Theorem 10.  Let 𝑓𝑓 be a 2𝜋𝜋-periodic function on ℝ (defined on the circle). When restricted to 
[−𝜋𝜋, 𝜋𝜋]  (or [0,2𝜋𝜋] ,) it is a sum of finitely many continuous monotonic functions. Then 𝑆𝑆𝑁𝑁(𝑓𝑓) 
converge to 𝑓𝑓 uniformly on ℝ as 𝑁𝑁 tends to infinity. 
Remark 11.  finitely many actually means two(2) because the sum of two continuous monotonically 
increasing function is still a monotonically increasing function. 

Claim: The restriction of 𝑓𝑓 on [−𝜋𝜋, 3𝜋𝜋] is a sum of 4 continuous monotonic functions. 
Proof of Claim: Without loss of generosity, the author may assume 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 𝜋𝜋] 

where, 𝑔𝑔1 and 𝑔𝑔2 are continuous monotonically increasing and 𝑔𝑔1(−𝜋𝜋) = 𝑔𝑔2(−𝜋𝜋) = 0, 𝑔𝑔1(𝜋𝜋) =
𝑔𝑔2(𝜋𝜋) ≥ 0. 

Then Define 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝑥𝑥) 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝜋𝜋) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (30) 

for 𝑙𝑙 = 1,2. And 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 0 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙−2(𝑥𝑥) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (31) 

for 𝑙𝑙 = 3,4. Then f=𝑔𝑔1̃ − 𝑔𝑔2̃ + 𝑔𝑔3̃ − 𝑔𝑔4̃. 
Proof of the theorem: According to Claim, there exist continuous monotonic function 𝑔𝑔1 and 𝑔𝑔2 

on [−𝜋𝜋, 3𝜋𝜋] such that 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 3𝜋𝜋]. Denote 𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑝𝑝𝑥𝑥∈[−𝜋𝜋,3𝜋𝜋](|𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥)|) ≤
∞. Let 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝛿𝛿 ∈ (0, 𝜋𝜋) be arbitrary. Then 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) − 𝑓𝑓(𝑥𝑥) = 1
2𝜋𝜋 ∫ sin

𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 

= 1
2𝜋𝜋 (∫ +

−𝛿𝛿

−𝜋𝜋
∫ +

0

−𝛿𝛿
∫ +

𝛿𝛿

0
∫

𝜋𝜋

𝛿𝛿
) sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦  

: = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 + 𝐼𝐼4 (32) 
By symmetry, this artical only considers 𝐼𝐼3 and 𝐼𝐼4. Note that 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) −

𝑔𝑔2(𝑥𝑥 − 𝑦𝑦)) − (𝑔𝑔1(𝑥𝑥) − 𝑔𝑔2(𝑥𝑥)) for any 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋]. Thus by applying the second 
mean-value theorem, 

|𝐼𝐼4| ≤ 1
2𝜋𝜋 ⋅ 4 ⋅ 2𝑀𝑀 ⋅ 𝑠𝑠𝑠𝑠𝑝𝑝[𝑎𝑎,𝑏𝑏]⊂[𝛿𝛿,𝜋𝜋] ∫ 𝐷𝐷𝑁𝑁

𝑏𝑏

𝑎𝑎
(𝑦𝑦)𝑑𝑑𝑦𝑦 (33) 

which tend to zero as 𝑁𝑁  tend to zero irrelevant to 𝑥𝑥  for fixed 𝛿𝛿.  Similarly, write 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) −
𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔1(𝑥𝑥)) − (𝑔𝑔2(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔2(𝑥𝑥)).  And deduce from the second mean-value 
theorem to get 

|𝐼𝐼3| ≤ 1
2𝜋𝜋 (|𝑔𝑔1(𝑥𝑥 − 𝛿𝛿) − 𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥𝛿𝛿) − 𝑔𝑔2(𝑥𝑥)|) ⋅ sup

[𝑎𝑎,𝑏𝑏]⊂[0,𝛿𝛿]
|∫ 𝐷𝐷𝑁𝑁(𝑦𝑦)𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎
| (34) 

 For some 

constant 

6 

which is further bounded above by �̃̃�𝐶 1
𝑁𝑁

1
𝑁𝑁𝛼𝛼. For some constant �̃�𝐶, �̃̃�𝐶 Therefore it is finally known to 

us that:  

𝑈𝑈 ≤ 4𝜋𝜋
𝑁𝑁 𝑀𝑀1 + �̃̃�𝐶

𝑁𝑁𝛼𝛼  (28) 

Combined all results above, 
𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) (29) 

has an upper bound irrelevant to chosen 𝑥𝑥0 and tends to 0. Therefore the convergence is uniform. 
The theorem has now been proved. 

The theorem above has many corollary and application. One is a famous theorem proved by 
Dirichlet which states that any 𝐶𝐶1 function defined on the circle has uniform convergent Fourier 
series converged to itself. 
Uniform convergence of Fourier series: main result 2 
Theorem 10.  Let 𝑓𝑓 be a 2𝜋𝜋-periodic function on ℝ (defined on the circle). When restricted to 
[−𝜋𝜋, 𝜋𝜋]  (or [0,2𝜋𝜋] ,) it is a sum of finitely many continuous monotonic functions. Then 𝑆𝑆𝑁𝑁(𝑓𝑓) 
converge to 𝑓𝑓 uniformly on ℝ as 𝑁𝑁 tends to infinity. 
Remark 11.  finitely many actually means two(2) because the sum of two continuous monotonically 
increasing function is still a monotonically increasing function. 

Claim: The restriction of 𝑓𝑓 on [−𝜋𝜋, 3𝜋𝜋] is a sum of 4 continuous monotonic functions. 
Proof of Claim: Without loss of generosity, the author may assume 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 𝜋𝜋] 

where, 𝑔𝑔1 and 𝑔𝑔2 are continuous monotonically increasing and 𝑔𝑔1(−𝜋𝜋) = 𝑔𝑔2(−𝜋𝜋) = 0, 𝑔𝑔1(𝜋𝜋) =
𝑔𝑔2(𝜋𝜋) ≥ 0. 

Then Define 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝑥𝑥) 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝜋𝜋) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (30) 

for 𝑙𝑙 = 1,2. And 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 0 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙−2(𝑥𝑥) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (31) 

for 𝑙𝑙 = 3,4. Then f=𝑔𝑔1̃ − 𝑔𝑔2̃ + 𝑔𝑔3̃ − 𝑔𝑔4̃. 
Proof of the theorem: According to Claim, there exist continuous monotonic function 𝑔𝑔1 and 𝑔𝑔2 

on [−𝜋𝜋, 3𝜋𝜋] such that 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 3𝜋𝜋]. Denote 𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑝𝑝𝑥𝑥∈[−𝜋𝜋,3𝜋𝜋](|𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥)|) ≤
∞. Let 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝛿𝛿 ∈ (0, 𝜋𝜋) be arbitrary. Then 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) − 𝑓𝑓(𝑥𝑥) = 1
2𝜋𝜋 ∫ sin

𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 

= 1
2𝜋𝜋 (∫ +

−𝛿𝛿

−𝜋𝜋
∫ +

0

−𝛿𝛿
∫ +

𝛿𝛿

0
∫

𝜋𝜋

𝛿𝛿
) sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦  

: = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 + 𝐼𝐼4 (32) 
By symmetry, this artical only considers 𝐼𝐼3 and 𝐼𝐼4. Note that 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) −

𝑔𝑔2(𝑥𝑥 − 𝑦𝑦)) − (𝑔𝑔1(𝑥𝑥) − 𝑔𝑔2(𝑥𝑥)) for any 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋]. Thus by applying the second 
mean-value theorem, 

|𝐼𝐼4| ≤ 1
2𝜋𝜋 ⋅ 4 ⋅ 2𝑀𝑀 ⋅ 𝑠𝑠𝑠𝑠𝑝𝑝[𝑎𝑎,𝑏𝑏]⊂[𝛿𝛿,𝜋𝜋] ∫ 𝐷𝐷𝑁𝑁

𝑏𝑏

𝑎𝑎
(𝑦𝑦)𝑑𝑑𝑦𝑦 (33) 

which tend to zero as 𝑁𝑁  tend to zero irrelevant to 𝑥𝑥  for fixed 𝛿𝛿.  Similarly, write 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) −
𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔1(𝑥𝑥)) − (𝑔𝑔2(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔2(𝑥𝑥)).  And deduce from the second mean-value 
theorem to get 

|𝐼𝐼3| ≤ 1
2𝜋𝜋 (|𝑔𝑔1(𝑥𝑥 − 𝛿𝛿) − 𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥𝛿𝛿) − 𝑔𝑔2(𝑥𝑥)|) ⋅ sup

[𝑎𝑎,𝑏𝑏]⊂[0,𝛿𝛿]
|∫ 𝐷𝐷𝑁𝑁(𝑦𝑦)𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎
| (34) 

 Therefore it is finally known to us that:

 U M≤ +
4
N N
π

1
C

 
 

α  (28)

Combined all results above,
 S f x f xN ( )( 0 0) − ( )  (29)

has an upper bound irrelevant to chosen x0  and tends to 0
. Therefore the convergence is uniform. The theorem has 
now been proved.
The theorem above has many corollary and application. 
One is a famous theorem proved by Dirichlet which states 
that any C1  function defined on the circle has uniform 
convergent Fourier series converged to itself.
Uniform convergence of Fourier series: main result 2
Theorem 10.  Let f  be a 2π -periodic function on   

(defined on the circle). When restricted to [−π π, ]  (or 

[0,2π ] ,) it is a sum of finitely many continuous mono-

tonic functions. Then S fN ( )  converge to f  uniformly on 
  as N  tends to infinity.
Remark 11.  finitely many actually means two( 2 ) because 
the sum of two continuous monotonically increasing func-
tion is still a monotonically increasing function.
Claim: The restriction of f  on [−π π,3 ]  is a sum of 4  
continuous monotonic functions.
Proof of Claim: Without loss of generosity, the au-
thor may assume f g g= −1 2  on [−π π, ]  where, g1  

and g2  are continuous monotonically increasing and 

g g1 2(− = − =π π) ( ) 0,  g g1 2(π π) = ≥( ) 0.

Then Define
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which is further bounded above by �̃̃�𝐶 1
𝑁𝑁

1
𝑁𝑁𝛼𝛼. For some constant �̃�𝐶, �̃̃�𝐶 Therefore it is finally known to 

us that:  

𝑈𝑈 ≤ 4𝜋𝜋
𝑁𝑁 𝑀𝑀1 + �̃̃�𝐶

𝑁𝑁𝛼𝛼  (28) 

Combined all results above, 
𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) (29) 

has an upper bound irrelevant to chosen 𝑥𝑥0 and tends to 0. Therefore the convergence is uniform. 
The theorem has now been proved. 

The theorem above has many corollary and application. One is a famous theorem proved by 
Dirichlet which states that any 𝐶𝐶1 function defined on the circle has uniform convergent Fourier 
series converged to itself. 
Uniform convergence of Fourier series: main result 2 
Theorem 10.  Let 𝑓𝑓 be a 2𝜋𝜋-periodic function on ℝ (defined on the circle). When restricted to 
[−𝜋𝜋, 𝜋𝜋]  (or [0,2𝜋𝜋] ,) it is a sum of finitely many continuous monotonic functions. Then 𝑆𝑆𝑁𝑁(𝑓𝑓) 
converge to 𝑓𝑓 uniformly on ℝ as 𝑁𝑁 tends to infinity. 
Remark 11.  finitely many actually means two(2) because the sum of two continuous monotonically 
increasing function is still a monotonically increasing function. 

Claim: The restriction of 𝑓𝑓 on [−𝜋𝜋, 3𝜋𝜋] is a sum of 4 continuous monotonic functions. 
Proof of Claim: Without loss of generosity, the author may assume 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 𝜋𝜋] 

where, 𝑔𝑔1 and 𝑔𝑔2 are continuous monotonically increasing and 𝑔𝑔1(−𝜋𝜋) = 𝑔𝑔2(−𝜋𝜋) = 0, 𝑔𝑔1(𝜋𝜋) =
𝑔𝑔2(𝜋𝜋) ≥ 0. 

Then Define 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝑥𝑥) 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝜋𝜋) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (30) 

for 𝑙𝑙 = 1,2. And 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 0 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙−2(𝑥𝑥) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (31) 

for 𝑙𝑙 = 3,4. Then f=𝑔𝑔1̃ − 𝑔𝑔2̃ + 𝑔𝑔3̃ − 𝑔𝑔4̃. 
Proof of the theorem: According to Claim, there exist continuous monotonic function 𝑔𝑔1 and 𝑔𝑔2 

on [−𝜋𝜋, 3𝜋𝜋] such that 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 3𝜋𝜋]. Denote 𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑝𝑝𝑥𝑥∈[−𝜋𝜋,3𝜋𝜋](|𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥)|) ≤
∞. Let 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝛿𝛿 ∈ (0, 𝜋𝜋) be arbitrary. Then 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) − 𝑓𝑓(𝑥𝑥) = 1
2𝜋𝜋 ∫ sin

𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 

= 1
2𝜋𝜋 (∫ +

−𝛿𝛿

−𝜋𝜋
∫ +

0

−𝛿𝛿
∫ +

𝛿𝛿

0
∫

𝜋𝜋

𝛿𝛿
) sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦  

: = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 + 𝐼𝐼4 (32) 
By symmetry, this artical only considers 𝐼𝐼3 and 𝐼𝐼4. Note that 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) −

𝑔𝑔2(𝑥𝑥 − 𝑦𝑦)) − (𝑔𝑔1(𝑥𝑥) − 𝑔𝑔2(𝑥𝑥)) for any 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋]. Thus by applying the second 
mean-value theorem, 

|𝐼𝐼4| ≤ 1
2𝜋𝜋 ⋅ 4 ⋅ 2𝑀𝑀 ⋅ 𝑠𝑠𝑠𝑠𝑝𝑝[𝑎𝑎,𝑏𝑏]⊂[𝛿𝛿,𝜋𝜋] ∫ 𝐷𝐷𝑁𝑁

𝑏𝑏

𝑎𝑎
(𝑦𝑦)𝑑𝑑𝑦𝑦 (33) 

which tend to zero as 𝑁𝑁  tend to zero irrelevant to 𝑥𝑥  for fixed 𝛿𝛿.  Similarly, write 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) −
𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔1(𝑥𝑥)) − (𝑔𝑔2(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔2(𝑥𝑥)).  And deduce from the second mean-value 
theorem to get 

|𝐼𝐼3| ≤ 1
2𝜋𝜋 (|𝑔𝑔1(𝑥𝑥 − 𝛿𝛿) − 𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥𝛿𝛿) − 𝑔𝑔2(𝑥𝑥)|) ⋅ sup

[𝑎𝑎,𝑏𝑏]⊂[0,𝛿𝛿]
|∫ 𝐷𝐷𝑁𝑁(𝑦𝑦)𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎
| (34) 

 (30)

for l =1,2 . And
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which is further bounded above by �̃̃�𝐶 1
𝑁𝑁

1
𝑁𝑁𝛼𝛼. For some constant �̃�𝐶, �̃̃�𝐶 Therefore it is finally known to 

us that:  

𝑈𝑈 ≤ 4𝜋𝜋
𝑁𝑁 𝑀𝑀1 + �̃̃�𝐶

𝑁𝑁𝛼𝛼  (28) 

Combined all results above, 
𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) (29) 

has an upper bound irrelevant to chosen 𝑥𝑥0 and tends to 0. Therefore the convergence is uniform. 
The theorem has now been proved. 

The theorem above has many corollary and application. One is a famous theorem proved by 
Dirichlet which states that any 𝐶𝐶1 function defined on the circle has uniform convergent Fourier 
series converged to itself. 
Uniform convergence of Fourier series: main result 2 
Theorem 10.  Let 𝑓𝑓 be a 2𝜋𝜋-periodic function on ℝ (defined on the circle). When restricted to 
[−𝜋𝜋, 𝜋𝜋]  (or [0,2𝜋𝜋] ,) it is a sum of finitely many continuous monotonic functions. Then 𝑆𝑆𝑁𝑁(𝑓𝑓) 
converge to 𝑓𝑓 uniformly on ℝ as 𝑁𝑁 tends to infinity. 
Remark 11.  finitely many actually means two(2) because the sum of two continuous monotonically 
increasing function is still a monotonically increasing function. 

Claim: The restriction of 𝑓𝑓 on [−𝜋𝜋, 3𝜋𝜋] is a sum of 4 continuous monotonic functions. 
Proof of Claim: Without loss of generosity, the author may assume 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 𝜋𝜋] 

where, 𝑔𝑔1 and 𝑔𝑔2 are continuous monotonically increasing and 𝑔𝑔1(−𝜋𝜋) = 𝑔𝑔2(−𝜋𝜋) = 0, 𝑔𝑔1(𝜋𝜋) =
𝑔𝑔2(𝜋𝜋) ≥ 0. 

Then Define 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝑥𝑥) 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝜋𝜋) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (30) 

for 𝑙𝑙 = 1,2. And 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 0 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙−2(𝑥𝑥) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (31) 

for 𝑙𝑙 = 3,4. Then f=𝑔𝑔1̃ − 𝑔𝑔2̃ + 𝑔𝑔3̃ − 𝑔𝑔4̃. 
Proof of the theorem: According to Claim, there exist continuous monotonic function 𝑔𝑔1 and 𝑔𝑔2 

on [−𝜋𝜋, 3𝜋𝜋] such that 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 3𝜋𝜋]. Denote 𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑝𝑝𝑥𝑥∈[−𝜋𝜋,3𝜋𝜋](|𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥)|) ≤
∞. Let 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝛿𝛿 ∈ (0, 𝜋𝜋) be arbitrary. Then 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) − 𝑓𝑓(𝑥𝑥) = 1
2𝜋𝜋 ∫ sin

𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 

= 1
2𝜋𝜋 (∫ +

−𝛿𝛿

−𝜋𝜋
∫ +

0

−𝛿𝛿
∫ +

𝛿𝛿

0
∫

𝜋𝜋

𝛿𝛿
) sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦  

: = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 + 𝐼𝐼4 (32) 
By symmetry, this artical only considers 𝐼𝐼3 and 𝐼𝐼4. Note that 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) −

𝑔𝑔2(𝑥𝑥 − 𝑦𝑦)) − (𝑔𝑔1(𝑥𝑥) − 𝑔𝑔2(𝑥𝑥)) for any 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋]. Thus by applying the second 
mean-value theorem, 

|𝐼𝐼4| ≤ 1
2𝜋𝜋 ⋅ 4 ⋅ 2𝑀𝑀 ⋅ 𝑠𝑠𝑠𝑠𝑝𝑝[𝑎𝑎,𝑏𝑏]⊂[𝛿𝛿,𝜋𝜋] ∫ 𝐷𝐷𝑁𝑁

𝑏𝑏

𝑎𝑎
(𝑦𝑦)𝑑𝑑𝑦𝑦 (33) 

which tend to zero as 𝑁𝑁  tend to zero irrelevant to 𝑥𝑥  for fixed 𝛿𝛿.  Similarly, write 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) −
𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔1(𝑥𝑥)) − (𝑔𝑔2(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔2(𝑥𝑥)).  And deduce from the second mean-value 
theorem to get 

|𝐼𝐼3| ≤ 1
2𝜋𝜋 (|𝑔𝑔1(𝑥𝑥 − 𝛿𝛿) − 𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥𝛿𝛿) − 𝑔𝑔2(𝑥𝑥)|) ⋅ sup

[𝑎𝑎,𝑏𝑏]⊂[0,𝛿𝛿]
|∫ 𝐷𝐷𝑁𝑁(𝑦𝑦)𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎
| (34) 

 (31)

for l = 3,4 . Then 
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which is further bounded above by �̃̃�𝐶 1
𝑁𝑁

1
𝑁𝑁𝛼𝛼. For some constant �̃�𝐶, �̃̃�𝐶 Therefore it is finally known to 

us that:  

𝑈𝑈 ≤ 4𝜋𝜋
𝑁𝑁 𝑀𝑀1 + �̃̃�𝐶

𝑁𝑁𝛼𝛼  (28) 

Combined all results above, 
𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0) (29) 

has an upper bound irrelevant to chosen 𝑥𝑥0 and tends to 0. Therefore the convergence is uniform. 
The theorem has now been proved. 

The theorem above has many corollary and application. One is a famous theorem proved by 
Dirichlet which states that any 𝐶𝐶1 function defined on the circle has uniform convergent Fourier 
series converged to itself. 
Uniform convergence of Fourier series: main result 2 
Theorem 10.  Let 𝑓𝑓 be a 2𝜋𝜋-periodic function on ℝ (defined on the circle). When restricted to 
[−𝜋𝜋, 𝜋𝜋]  (or [0,2𝜋𝜋] ,) it is a sum of finitely many continuous monotonic functions. Then 𝑆𝑆𝑁𝑁(𝑓𝑓) 
converge to 𝑓𝑓 uniformly on ℝ as 𝑁𝑁 tends to infinity. 
Remark 11.  finitely many actually means two(2) because the sum of two continuous monotonically 
increasing function is still a monotonically increasing function. 

Claim: The restriction of 𝑓𝑓 on [−𝜋𝜋, 3𝜋𝜋] is a sum of 4 continuous monotonic functions. 
Proof of Claim: Without loss of generosity, the author may assume 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 𝜋𝜋] 

where, 𝑔𝑔1 and 𝑔𝑔2 are continuous monotonically increasing and 𝑔𝑔1(−𝜋𝜋) = 𝑔𝑔2(−𝜋𝜋) = 0, 𝑔𝑔1(𝜋𝜋) =
𝑔𝑔2(𝜋𝜋) ≥ 0. 

Then Define 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝑥𝑥) 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙(𝜋𝜋) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (30) 

for 𝑙𝑙 = 1,2. And 

𝑔𝑔�̃�𝑖(𝑥𝑥) = {𝑔𝑔�̃�𝑖(𝑥𝑥) = 0 𝑥𝑥 ∈ [−𝜋𝜋, 𝜋𝜋]
𝑔𝑔�̃�𝑖(𝑥𝑥) = 𝑔𝑔𝑙𝑙−2(𝑥𝑥) 𝑥𝑥 ∈ [𝜋𝜋, 3𝜋𝜋] (31) 

for 𝑙𝑙 = 3,4. Then f=𝑔𝑔1̃ − 𝑔𝑔2̃ + 𝑔𝑔3̃ − 𝑔𝑔4̃. 
Proof of the theorem: According to Claim, there exist continuous monotonic function 𝑔𝑔1 and 𝑔𝑔2 

on [−𝜋𝜋, 3𝜋𝜋] such that 𝑓𝑓 = 𝑔𝑔1 − 𝑔𝑔2 on [−𝜋𝜋, 3𝜋𝜋]. Denote 𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑝𝑝𝑥𝑥∈[−𝜋𝜋,3𝜋𝜋](|𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥)|) ≤
∞. Let 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝛿𝛿 ∈ (0, 𝜋𝜋) be arbitrary. Then 

𝑆𝑆𝑁𝑁(𝑓𝑓)(𝑥𝑥) − 𝑓𝑓(𝑥𝑥) = 1
2𝜋𝜋 ∫ sin

𝜋𝜋

−𝜋𝜋
((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦 

= 1
2𝜋𝜋 (∫ +

−𝛿𝛿

−𝜋𝜋
∫ +

0

−𝛿𝛿
∫ +

𝛿𝛿

0
∫

𝜋𝜋

𝛿𝛿
) sin ((𝑁𝑁 + 1

2) 𝑦𝑦) 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥)
sin 𝑦𝑦

2
𝑑𝑑𝑦𝑦  

: = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 + 𝐼𝐼4 (32) 
By symmetry, this artical only considers 𝐼𝐼3 and 𝐼𝐼4. Note that 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) − 𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) −

𝑔𝑔2(𝑥𝑥 − 𝑦𝑦)) − (𝑔𝑔1(𝑥𝑥) − 𝑔𝑔2(𝑥𝑥)) for any 𝑥𝑥 ∈ [0,2𝜋𝜋] and 𝑦𝑦 ∈ [−𝜋𝜋, 𝜋𝜋]. Thus by applying the second 
mean-value theorem, 

|𝐼𝐼4| ≤ 1
2𝜋𝜋 ⋅ 4 ⋅ 2𝑀𝑀 ⋅ 𝑠𝑠𝑠𝑠𝑝𝑝[𝑎𝑎,𝑏𝑏]⊂[𝛿𝛿,𝜋𝜋] ∫ 𝐷𝐷𝑁𝑁

𝑏𝑏

𝑎𝑎
(𝑦𝑦)𝑑𝑑𝑦𝑦 (33) 

which tend to zero as 𝑁𝑁  tend to zero irrelevant to 𝑥𝑥  for fixed 𝛿𝛿.  Similarly, write 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) −
𝑓𝑓(𝑥𝑥) = (𝑔𝑔1(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔1(𝑥𝑥)) − (𝑔𝑔2(𝑥𝑥 − 𝑦𝑦) − 𝑔𝑔2(𝑥𝑥)).  And deduce from the second mean-value 
theorem to get 

|𝐼𝐼3| ≤ 1
2𝜋𝜋 (|𝑔𝑔1(𝑥𝑥 − 𝛿𝛿) − 𝑔𝑔1(𝑥𝑥)| + |𝑔𝑔2(𝑥𝑥𝛿𝛿) − 𝑔𝑔2(𝑥𝑥)|) ⋅ sup

[𝑎𝑎,𝑏𝑏]⊂[0,𝛿𝛿]
|∫ 𝐷𝐷𝑁𝑁(𝑦𝑦)𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎
| (34) 

Proof of the theorem: According to Claim, there ex-
ist continuous monotonic function g1  and g2  on 

[−π π,3 ]  such that f g g= −1 2  on [−π π,3 ] .  Denote 

M sup g x g x= + ≤∞x∈ −[ π π,3 ] ( 1 2( ) ( ) ) .  Let x∈[0,2π ]  and 

δ π∈(0, )  be arbitrary. Then

(

S f x f x sin N y

f x y f x

sin N y dy I I I I

N

(

(

(

− −

sin

)(

+ = + + +

)

2

)

y

1
2

− = +

)

(

)

(

f x y f x

)

)

dy

( − −

= + + +

2 2

sin

1 1
π

2
1

)

π

∫

2
y

π
−

(
π

∫ ∫ ∫ ∫−
− −

(

δ δ π
π δ δ

  
  
  

)

0

: 1 2 3 4

0 )   (32)

By symmetry, this artical only considers I3  and I4.  Note 
that 
f x y f x g x y g x y g x g x( − − = − − − − −) ( ) ( 1 2 1 2( ) ( )) ( ( ) ( ))  

for any x∈[0,2π ]  and y∈ −[ π π, .]  Thus by applying the 
second mean-value theorem,

 I M sup D y dy4 ≤ ⋅ ⋅ ⋅
2
1
π

4 2 [a b, ,]⊂[δ π ] ∫b
a N ( )  (33)

which tend to zero as N  tend to zero irrelevant to x  for 
fixed δ .  Similarly, write 

(
f x y f x g x y g x
g x y g x
(

2 2(
− − = − − −

− −
)
)

( )
( )

(
).

1 1( ) ( ))
 

And deduce from the second mean-value theorem to get

 
⋅

I g x g x g x g x

[a b

3 1 1 2 2

, 0,
sup D y dy
]

≤ − − + −

⊂[

2
1

δ

π

]
∫

(

b
a N

(

(

δ

)

) ( ) ( δ ) ( ) )
 (34)

which is close enough to 0  when δ  is sufficiently small 
for all x∈[0,2 .π ]  Combine the results proved above. The 
desired uniform convergence follows.
Next, the artical introduces a type of functions of vital 
importance. With the theorem above essentially applied in 
the uniform convergence of its Fourier series.

5



Dean&Francis

Definition 6.  A function f  defined on the interval [−π π, ]  
(or equivalently on the circle) is said to be of bounded 
variation if the total variation [7] of f  over [−π π, ]  is fi-
nite.
The total variation of f  on [−π π, ]  is defined as:

V f

sup f x f x x x x

[−π π,

 
 
 

]

∑
i

(

=

n

1

) =

( i i n) − − ≤ < < < ≤( −1 0 1) : π π

 (35)

are the supremum is taken over all possible partitions 
{ , , , }x x x0 1 … n  of the interval [−π π, ] .

In other words, f  is of bounded variation if there exists a 

constant M  such that for any partition { , , , }x x x0 1 … n  of 

[−π π, ] ,

 ∑
i=

n

1
f x f x M( i i) − ≤( −1 )  (36)

For functions defined on the circle, consider their periodic 
extensions and the definition of bounded variation applies 
similarly within one period, [−π π, ] .

Theorem 12.  A continuous function f  defined on the in-

terval [−π π, ]  (or equivalently on the circle) is of bound-
ed variation if and only if it can be expressed as the sum 
of two continuous monotonic functions [8].
That is, there exist two functions f1  and f2 , both continu-

ous and monotonic on [−π π, ] , such that:

 f x f x f x x( ) = + ∈ −1 2( ) ( )?forall? ,[ π π ]  (37)

Proof. Necessity: Given f  is a continuous function of 

bounded variation on [−π π, ] , can construct f1  and f2  as 

f o l l o w s :
1
2

f x V f f x f f x1 2

(

(

V f f x f[−

)

π

= + + − =

,x]

1
2

(

(

)

[−

− + −

π ,x]

(

(

)

)

(

(

π

)

)).

( π )) , ( )
 

Here, V f[−π ,x] ( )  denotes the total variation of f  from −π  

to x . Both f1  and f2  are continuous and monotonic func-
tions [9].
Sufficiency: If f  can be written as f f f= +1 2  where f1  

and f2  are continuous and monotonic on [−π π, ] , then f  

is of bounded variation since the total variation of f  can 

be bounded by the total variations of f1  and f2  [10].

Therefore, a continuous function f  is of bounded varia-

tion on [−π π, ]  if and only if it can be decomposed into 
the sum of two continuous monotonic functions. By the 

definition and the theorem above, this artical presents a 
strong corollary of Theorem 3.3.
Corollary 13.  Let f  be a continuous function of bounded 

variation defined on the interval [−π π, ]  (or equivalently 

on the circle). Then the Fourier series of f  converges uni-
formly to f .

4. Conclusion
In this paper, the author examines the uniform conver-
gence of Fourier series for two types of functions: Hölder 
continuous functions and functions that can be represent-
ed as the sum of a finite number of continuous monotonic 
functions. These findings enhance people’s theoretical 
knowledge of Fourier series and offer practical tools for 
their use in various scientific and engineering fields. The 
uniform convergence of Fourier series is a crucial aspect 
of Fourier analysis, ensuring that the series approximates 
the function ll across its entire domain. This property is 
particularly important in applications where preserving 
the continuity and integrability of the original function is 
essential. By establishing conditions under which uniform 
convergence is guaranteed, this study contributes to the 
robustness and reliability of Fourier analysis as a mathe-
matical tool. For Hölder continuous functions, the uniform 
convergence of Fourier series highlights the importance 
of regularity conditions in ensuring good approxima-
tion properties. The Hölder condition provides a specific 
framework that facilitates analysis and allows for a more 
precise understanding of how Fourier series behave for 
functions with a certain degree of smoothness. This result 
has significant implications for both theoretical research 
and practical applications, as many real-world functions 
exhibit Hölder continuity.
The exploration of functions that can be decomposed into 
finitely many continuous monotonic components extends 
the applicability of Fourier series to a broader class of 
functions. This result is particularly useful because many 
practical functions can be approximated or represented 
in this form. By demonstrating that the Fourier series of 
such functions converge uniformly, it has been provided 
a powerful tool for analyzing and approximating complex 
functions in a variety of contexts. In conclusion, the re-
sults presented in this paper reinforce the significance of 
uniform convergence in Fourier analysis and underscore 
the versatility and robustness of this mathematical tool. 
By establishing clear conditions for uniform convergence, 
the author provides a foundation for further research and 
application in various fields. The study of Fourier series 
remains a vibrant area of mathematical research, with 
ongoing efforts to uncover new results and applications. 
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Through this work, the author contributes to the rich tap-
estry of knowledge that makes Fourier analysis an indis-
pensable tool in both theoretical and applied mathematics.
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